mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-09 15:03:37 +01:00
1585 lines
57 KiB
Fortran
1585 lines
57 KiB
Fortran
|
|
||
|
! ---
|
||
|
|
||
|
double precision function ao_two_e_integral_cosgtos(i, j, k, l)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! integral of the AO basis <ik|jl> or (ij|kl)
|
||
|
! i(r1) j(r1) 1/r12 k(r2) l(r2)
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: i, j, k, l
|
||
|
|
||
|
integer :: p, q, r, s
|
||
|
integer :: num_i, num_j, num_k, num_l, dim1, I_power(3), J_power(3), K_power(3), L_power(3)
|
||
|
integer :: iorder_p1(3), iorder_p2(3), iorder_p3(3), iorder_p4(3), iorder_q1(3), iorder_q2(3)
|
||
|
double precision :: coef1, coef2, coef3, coef4
|
||
|
complex*16 :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||
|
complex*16 :: expo1, expo2, expo3, expo4
|
||
|
complex*16 :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||
|
complex*16 :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2, p2_inv
|
||
|
complex*16 :: P3_new(0:max_dim,3), P3_center(3), fact_p3, pp3, p3_inv
|
||
|
complex*16 :: P4_new(0:max_dim,3), P4_center(3), fact_p4, pp4, p4_inv
|
||
|
complex*16 :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||
|
complex*16 :: Q2_new(0:max_dim,3), Q2_center(3), fact_q2, qq2, q2_inv
|
||
|
complex*16 :: integral1, integral2, integral3, integral4
|
||
|
complex*16 :: integral5, integral6, integral7, integral8
|
||
|
complex*16 :: integral_tot
|
||
|
|
||
|
double precision :: ao_two_e_integral_cosgtos_schwartz_accel
|
||
|
complex*16 :: ERI_cosgtos
|
||
|
complex*16 :: general_primitive_integral_cosgtos
|
||
|
|
||
|
if(ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024) then
|
||
|
|
||
|
!print *, ' with shwartz acc '
|
||
|
ao_two_e_integral_cosgtos = ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
|
||
|
|
||
|
else
|
||
|
!print *, ' without shwartz acc '
|
||
|
|
||
|
dim1 = n_pt_max_integrals
|
||
|
|
||
|
num_i = ao_nucl(i)
|
||
|
num_j = ao_nucl(j)
|
||
|
num_k = ao_nucl(k)
|
||
|
num_l = ao_nucl(l)
|
||
|
|
||
|
ao_two_e_integral_cosgtos = 0.d0
|
||
|
|
||
|
if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
|
||
|
!print *, ' not the same center'
|
||
|
|
||
|
do p = 1, 3
|
||
|
I_power(p) = ao_power(i,p)
|
||
|
J_power(p) = ao_power(j,p)
|
||
|
K_power(p) = ao_power(k,p)
|
||
|
L_power(p) = ao_power(l,p)
|
||
|
I_center(p) = nucl_coord(num_i,p) * (1.d0, 0.d0)
|
||
|
J_center(p) = nucl_coord(num_j,p) * (1.d0, 0.d0)
|
||
|
K_center(p) = nucl_coord(num_k,p) * (1.d0, 0.d0)
|
||
|
L_center(p) = nucl_coord(num_l,p) * (1.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
do p = 1, ao_prim_num(i)
|
||
|
coef1 = ao_coef_norm_ord_transp_cosgtos(p,i)
|
||
|
expo1 = ao_expo_ord_transp_cosgtos(p,i)
|
||
|
|
||
|
do q = 1, ao_prim_num(j)
|
||
|
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j)
|
||
|
expo2 = ao_expo_ord_transp_cosgtos(q,j)
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P1_new, P1_center, pp1, fact_p1, iorder_p1 &
|
||
|
, expo1, expo2, I_power, J_power, I_center, J_center, dim1 )
|
||
|
p1_inv = (1.d0,0.d0) / pp1
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P2_new, P2_center, pp2, fact_p2, iorder_p2 &
|
||
|
, conjg(expo1), expo2, I_power, J_power, I_center, J_center, dim1 )
|
||
|
p2_inv = (1.d0,0.d0) / pp2
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P3_new, P3_center, pp3, fact_p3, iorder_p3 &
|
||
|
, expo1, conjg(expo2), I_power, J_power, I_center, J_center, dim1 )
|
||
|
p3_inv = (1.d0,0.d0) / pp3
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P4_new, P4_center, pp4, fact_p4, iorder_p4 &
|
||
|
, conjg(expo1), conjg(expo2), I_power, J_power, I_center, J_center, dim1 )
|
||
|
p4_inv = (1.d0,0.d0) / pp4
|
||
|
|
||
|
!integer :: ii
|
||
|
!do ii = 1, 3
|
||
|
! print *, 'fact_p1', fact_p1
|
||
|
! print *, 'fact_p2', fact_p2
|
||
|
! print *, 'fact_p3', fact_p3
|
||
|
! print *, 'fact_p4', fact_p4
|
||
|
! !print *, pp1, p1_inv
|
||
|
! !print *, pp2, p2_inv
|
||
|
! !print *, pp3, p3_inv
|
||
|
! !print *, pp4, p4_inv
|
||
|
!enddo
|
||
|
! if( abs(aimag(P1_center(ii))) .gt. 0.d0 ) then
|
||
|
! print *, ' P_1 is complex !!'
|
||
|
! print *, P1_center
|
||
|
! print *, expo1, expo2
|
||
|
! print *, conjg(expo1), conjg(expo2)
|
||
|
! stop
|
||
|
! endif
|
||
|
! if( abs(aimag(P2_center(ii))) .gt. 0.d0 ) then
|
||
|
! print *, ' P_2 is complex !!'
|
||
|
! print *, P2_center
|
||
|
! print *, ' old expos:'
|
||
|
! print *, expo1, expo2
|
||
|
! print *, conjg(expo1), conjg(expo2)
|
||
|
! print *, ' new expo:'
|
||
|
! print *, pp2, p2_inv
|
||
|
! print *, ' factor:'
|
||
|
! print *, fact_p2
|
||
|
! print *, ' old centers:'
|
||
|
! print *, I_center, J_center
|
||
|
! print *, ' powers:'
|
||
|
! print *, I_power, J_power
|
||
|
! stop
|
||
|
! endif
|
||
|
! if( abs(aimag(P3_center(ii))) .gt. 0.d0 ) then
|
||
|
! print *, ' P_3 is complex !!'
|
||
|
! print *, P3_center
|
||
|
! print *, expo1, expo2
|
||
|
! print *, conjg(expo1), conjg(expo2)
|
||
|
! stop
|
||
|
! endif
|
||
|
! if( abs(aimag(P4_center(ii))) .gt. 0.d0 ) then
|
||
|
! print *, ' P_4 is complex !!'
|
||
|
! print *, P4_center
|
||
|
! print *, expo1, expo2
|
||
|
! print *, conjg(expo1), conjg(expo2)
|
||
|
! stop
|
||
|
! endif
|
||
|
!enddo
|
||
|
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
coef3 = coef2 * ao_coef_norm_ord_transp_cosgtos(r,k)
|
||
|
expo3 = ao_expo_ord_transp_cosgtos(r,k)
|
||
|
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||
|
expo4 = ao_expo_ord_transp_cosgtos(s,l)
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q1 &
|
||
|
, expo3, expo4, K_power, L_power, K_center, L_center, dim1 )
|
||
|
q1_inv = (1.d0,0.d0) / qq1
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( Q2_new, Q2_center, qq2, fact_q2, iorder_q2 &
|
||
|
, conjg(expo3), expo4, K_power, L_power, K_center, L_center, dim1 )
|
||
|
q2_inv = (1.d0,0.d0) / qq2
|
||
|
|
||
|
!do ii = 1, 3
|
||
|
! !print *, qq1, q1_inv
|
||
|
! !print *, qq2, q2_inv
|
||
|
! print *, 'fact_q1', fact_q1
|
||
|
! print *, 'fact_q2', fact_q2
|
||
|
!enddo
|
||
|
! if( abs(aimag(Q1_center(ii))) .gt. 0.d0 ) then
|
||
|
! print *, ' Q_1 is complex !!'
|
||
|
! print *, Q1_center
|
||
|
! print *, expo3, expo4
|
||
|
! print *, conjg(expo3), conjg(expo4)
|
||
|
! stop
|
||
|
! endif
|
||
|
! if( abs(aimag(Q2_center(ii))) .gt. 0.d0 ) then
|
||
|
! print *, ' Q_2 is complex !!'
|
||
|
! print *, Q2_center
|
||
|
! print *, expo3, expo4
|
||
|
! print *, conjg(expo3), conjg(expo4)
|
||
|
! stop
|
||
|
! endif
|
||
|
!enddo
|
||
|
|
||
|
|
||
|
integral1 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||
|
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||
|
|
||
|
integral2 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||
|
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||
|
|
||
|
integral3 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||
|
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||
|
|
||
|
integral4 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||
|
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||
|
|
||
|
integral5 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||
|
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||
|
|
||
|
integral6 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||
|
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||
|
|
||
|
integral7 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||
|
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||
|
|
||
|
integral8 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||
|
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||
|
|
||
|
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||
|
|
||
|
!integral_tot = integral1
|
||
|
!print*, integral_tot
|
||
|
|
||
|
ao_two_e_integral_cosgtos = ao_two_e_integral_cosgtos + coef4 * 2.d0 * real(integral_tot)
|
||
|
enddo ! s
|
||
|
enddo ! r
|
||
|
enddo ! q
|
||
|
enddo ! p
|
||
|
|
||
|
else
|
||
|
!print *, ' the same center'
|
||
|
|
||
|
do p = 1, 3
|
||
|
I_power(p) = ao_power(i,p)
|
||
|
J_power(p) = ao_power(j,p)
|
||
|
K_power(p) = ao_power(k,p)
|
||
|
L_power(p) = ao_power(l,p)
|
||
|
enddo
|
||
|
|
||
|
do p = 1, ao_prim_num(i)
|
||
|
coef1 = ao_coef_norm_ord_transp_cosgtos(p,i)
|
||
|
expo1 = ao_expo_ord_transp_cosgtos(p,i)
|
||
|
|
||
|
do q = 1, ao_prim_num(j)
|
||
|
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j)
|
||
|
expo2 = ao_expo_ord_transp_cosgtos(q,j)
|
||
|
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
coef3 = coef2 * ao_coef_norm_ord_transp_cosgtos(r,k)
|
||
|
expo3 = ao_expo_ord_transp_cosgtos(r,k)
|
||
|
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||
|
expo4 = ao_expo_ord_transp_cosgtos(s,l)
|
||
|
|
||
|
integral1 = ERI_cosgtos( expo1, expo2, expo3, expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo3), expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo3, expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo3), expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo3, expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo3), expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo3, expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo3), expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||
|
|
||
|
|
||
|
ao_two_e_integral_cosgtos = ao_two_e_integral_cosgtos + coef4 * 2.d0 * real(integral_tot)
|
||
|
enddo ! s
|
||
|
enddo ! r
|
||
|
enddo ! q
|
||
|
enddo ! p
|
||
|
|
||
|
endif
|
||
|
endif
|
||
|
|
||
|
end function ao_two_e_integral_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! integral of the AO basis <ik|jl> or (ij|kl)
|
||
|
! i(r1) j(r1) 1/r12 k(r2) l(r2)
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: i, j, k, l
|
||
|
|
||
|
integer :: p, q, r, s
|
||
|
integer :: num_i, num_j, num_k, num_l, dim1, I_power(3), J_power(3), K_power(3), L_power(3)
|
||
|
integer :: iorder_p1(3), iorder_p2(3), iorder_p3(3), iorder_p4(3), iorder_q1(3), iorder_q2(3)
|
||
|
double precision :: coef1, coef2, coef3, coef4
|
||
|
complex*16 :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||
|
complex*16 :: expo1, expo2, expo3, expo4
|
||
|
complex*16 :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||
|
complex*16 :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2, p2_inv
|
||
|
complex*16 :: P3_new(0:max_dim,3), P3_center(3), fact_p3, pp3, p3_inv
|
||
|
complex*16 :: P4_new(0:max_dim,3), P4_center(3), fact_p4, pp4, p4_inv
|
||
|
complex*16 :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||
|
complex*16 :: Q2_new(0:max_dim,3), Q2_center(3), fact_q2, qq2, q2_inv
|
||
|
complex*16 :: integral1, integral2, integral3, integral4
|
||
|
complex*16 :: integral5, integral6, integral7, integral8
|
||
|
complex*16 :: integral_tot
|
||
|
|
||
|
double precision, allocatable :: schwartz_kl(:,:)
|
||
|
double precision :: thr
|
||
|
double precision :: schwartz_ij
|
||
|
|
||
|
complex*16 :: ERI_cosgtos
|
||
|
complex*16 :: general_primitive_integral_cosgtos
|
||
|
|
||
|
ao_two_e_integral_cosgtos_schwartz_accel = 0.d0
|
||
|
|
||
|
dim1 = n_pt_max_integrals
|
||
|
|
||
|
num_i = ao_nucl(i)
|
||
|
num_j = ao_nucl(j)
|
||
|
num_k = ao_nucl(k)
|
||
|
num_l = ao_nucl(l)
|
||
|
|
||
|
|
||
|
thr = ao_integrals_threshold*ao_integrals_threshold
|
||
|
|
||
|
allocate( schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)) )
|
||
|
|
||
|
if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
|
||
|
|
||
|
do p = 1, 3
|
||
|
I_power(p) = ao_power(i,p)
|
||
|
J_power(p) = ao_power(j,p)
|
||
|
K_power(p) = ao_power(k,p)
|
||
|
L_power(p) = ao_power(l,p)
|
||
|
I_center(p) = nucl_coord(num_i,p) * (1.d0, 0.d0)
|
||
|
J_center(p) = nucl_coord(num_j,p) * (1.d0, 0.d0)
|
||
|
K_center(p) = nucl_coord(num_k,p) * (1.d0, 0.d0)
|
||
|
L_center(p) = nucl_coord(num_l,p) * (1.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
schwartz_kl(0,0) = 0.d0
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
coef1 = ao_coef_norm_ord_transp_cosgtos(r,k) * ao_coef_norm_ord_transp_cosgtos(r,k)
|
||
|
expo1 = ao_expo_ord_transp_cosgtos(r,k)
|
||
|
|
||
|
schwartz_kl(0,r) = 0.d0
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(s,l) * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||
|
expo2 = ao_expo_ord_transp_cosgtos(s,l)
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P1_new, P1_center, pp1, fact_p1, iorder_p1 &
|
||
|
, expo1, expo2, K_power, L_power, K_center, L_center, dim1 )
|
||
|
p1_inv = (1.d0,0.d0) / pp1
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P2_new, P2_center, pp2, fact_p2, iorder_p2 &
|
||
|
, conjg(expo1), expo2, K_power, L_power, K_center, L_center, dim1 )
|
||
|
p2_inv = (1.d0,0.d0) / pp2
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P3_new, P3_center, pp3, fact_p3, iorder_p3 &
|
||
|
, expo1, conjg(expo2), K_power, L_power, K_center, L_center, dim1 )
|
||
|
p3_inv = (1.d0,0.d0) / pp3
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P4_new, P4_center, pp4, fact_p4, iorder_p4 &
|
||
|
, conjg(expo1), conjg(expo2), K_power, L_power, K_center, L_center, dim1 )
|
||
|
p4_inv = (1.d0,0.d0) / pp4
|
||
|
|
||
|
integral1 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||
|
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||
|
|
||
|
integral2 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||
|
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||
|
|
||
|
integral3 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||
|
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||
|
|
||
|
integral4 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||
|
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||
|
|
||
|
integral5 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||
|
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||
|
|
||
|
integral6 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||
|
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||
|
|
||
|
integral7 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||
|
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||
|
|
||
|
integral8 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||
|
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||
|
|
||
|
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||
|
|
||
|
|
||
|
schwartz_kl(s,r) = coef2 * 2.d0 * real(integral_tot)
|
||
|
|
||
|
schwartz_kl(0,r) = max(schwartz_kl(0,r), schwartz_kl(s,r))
|
||
|
enddo
|
||
|
|
||
|
schwartz_kl(0,0) = max(schwartz_kl(0,r), schwartz_kl(0,0))
|
||
|
enddo
|
||
|
|
||
|
|
||
|
do p = 1, ao_prim_num(i)
|
||
|
coef1 = ao_coef_norm_ord_transp_cosgtos(p,i)
|
||
|
expo1 = ao_expo_ord_transp_cosgtos(p,i)
|
||
|
|
||
|
do q = 1, ao_prim_num(j)
|
||
|
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j)
|
||
|
expo2 = ao_expo_ord_transp_cosgtos(q,j)
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P1_new, P1_center, pp1, fact_p1, iorder_p1 &
|
||
|
, expo1, expo2, I_power, J_power, I_center, J_center, dim1 )
|
||
|
p1_inv = (1.d0,0.d0) / pp1
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P2_new, P2_center, pp2, fact_p2, iorder_p2 &
|
||
|
, conjg(expo1), expo2, I_power, J_power, I_center, J_center, dim1 )
|
||
|
p2_inv = (1.d0,0.d0) / pp2
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P3_new, P3_center, pp3, fact_p3, iorder_p3 &
|
||
|
, expo1, conjg(expo2), I_power, J_power, I_center, J_center, dim1 )
|
||
|
p3_inv = (1.d0,0.d0) / pp3
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( P4_new, P4_center, pp4, fact_p4, iorder_p4 &
|
||
|
, conjg(expo1), conjg(expo2), I_power, J_power, I_center, J_center, dim1 )
|
||
|
p4_inv = (1.d0,0.d0) / pp4
|
||
|
|
||
|
integral1 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||
|
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||
|
|
||
|
integral2 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||
|
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||
|
|
||
|
integral3 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||
|
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||
|
|
||
|
integral4 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||
|
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||
|
|
||
|
integral5 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||
|
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||
|
|
||
|
integral6 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||
|
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||
|
|
||
|
integral7 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||
|
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 )
|
||
|
|
||
|
integral8 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||
|
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 )
|
||
|
|
||
|
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||
|
|
||
|
schwartz_ij = coef2 * coef2 * 2.d0 * real(integral_tot)
|
||
|
|
||
|
if(schwartz_kl(0,0)*schwartz_ij < thr) cycle
|
||
|
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
if(schwartz_kl(0,r)*schwartz_ij < thr) cycle
|
||
|
|
||
|
coef3 = coef2 * ao_coef_norm_ord_transp_cosgtos(r,k)
|
||
|
expo3 = ao_expo_ord_transp_cosgtos(r,k)
|
||
|
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
if(schwartz_kl(s,r)*schwartz_ij < thr) cycle
|
||
|
|
||
|
coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||
|
expo4 = ao_expo_ord_transp_cosgtos(s,l)
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q1 &
|
||
|
, expo3, expo4, K_power, L_power, K_center, L_center, dim1 )
|
||
|
q1_inv = (1.d0,0.d0) / qq1
|
||
|
|
||
|
call give_explicit_cpoly_and_cgaussian( Q2_new, Q2_center, qq2, fact_q2, iorder_q2 &
|
||
|
, conjg(expo3), expo4, K_power, L_power, K_center, L_center, dim1 )
|
||
|
q2_inv = (1.d0,0.d0) / qq2
|
||
|
|
||
|
integral1 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||
|
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||
|
|
||
|
integral2 = general_primitive_integral_cosgtos( dim1, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p1 &
|
||
|
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||
|
|
||
|
integral3 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||
|
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||
|
|
||
|
integral4 = general_primitive_integral_cosgtos( dim1, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p2 &
|
||
|
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||
|
|
||
|
|
||
|
integral5 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||
|
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||
|
|
||
|
integral6 = general_primitive_integral_cosgtos( dim1, P3_new, P3_center, fact_p3, pp3, p3_inv, iorder_p3 &
|
||
|
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||
|
|
||
|
integral7 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||
|
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q1 )
|
||
|
|
||
|
integral8 = general_primitive_integral_cosgtos( dim1, P4_new, P4_center, fact_p4, pp4, p4_inv, iorder_p4 &
|
||
|
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q2 )
|
||
|
|
||
|
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||
|
|
||
|
ao_two_e_integral_cosgtos_schwartz_accel = ao_two_e_integral_cosgtos_schwartz_accel &
|
||
|
+ coef4 * 2.d0 * real(integral_tot)
|
||
|
enddo ! s
|
||
|
enddo ! r
|
||
|
enddo ! q
|
||
|
enddo ! p
|
||
|
|
||
|
else
|
||
|
|
||
|
do p = 1, 3
|
||
|
I_power(p) = ao_power(i,p)
|
||
|
J_power(p) = ao_power(j,p)
|
||
|
K_power(p) = ao_power(k,p)
|
||
|
L_power(p) = ao_power(l,p)
|
||
|
enddo
|
||
|
|
||
|
schwartz_kl(0,0) = 0.d0
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
coef1 = ao_coef_norm_ord_transp_cosgtos(r,k) * ao_coef_norm_ord_transp_cosgtos(r,k)
|
||
|
expo1 = ao_expo_ord_transp_cosgtos(r,k)
|
||
|
|
||
|
schwartz_kl(0,r) = 0.d0
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(s,l) * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||
|
expo2 = ao_expo_ord_transp_cosgtos(s,l)
|
||
|
|
||
|
integral1 = ERI_cosgtos( expo1, expo2, expo1, expo2 &
|
||
|
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||
|
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||
|
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||
|
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo1), expo2 &
|
||
|
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||
|
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||
|
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo1, expo2 &
|
||
|
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||
|
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||
|
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||
|
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo1), expo2 &
|
||
|
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||
|
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||
|
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo1, expo2 &
|
||
|
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||
|
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||
|
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||
|
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo1), expo2 &
|
||
|
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||
|
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||
|
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo1, expo2 &
|
||
|
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||
|
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||
|
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||
|
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo1), expo2 &
|
||
|
, K_power(1), L_power(1), K_power(1), L_power(1) &
|
||
|
, K_power(2), L_power(2), K_power(2), L_power(2) &
|
||
|
, K_power(3), L_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||
|
|
||
|
|
||
|
schwartz_kl(s,r) = coef2 * 2.d0 * real(integral_tot)
|
||
|
|
||
|
schwartz_kl(0,r) = max(schwartz_kl(0,r), schwartz_kl(s,r))
|
||
|
enddo
|
||
|
schwartz_kl(0,0) = max(schwartz_kl(0,r), schwartz_kl(0,0))
|
||
|
enddo
|
||
|
|
||
|
do p = 1, ao_prim_num(i)
|
||
|
coef1 = ao_coef_norm_ord_transp_cosgtos(p,i)
|
||
|
expo1 = ao_expo_ord_transp_cosgtos(p,i)
|
||
|
|
||
|
do q = 1, ao_prim_num(j)
|
||
|
coef2 = coef1 * ao_coef_norm_ord_transp_cosgtos(q,j)
|
||
|
expo2 = ao_expo_ord_transp_cosgtos(q,j)
|
||
|
|
||
|
integral1 = ERI_cosgtos( expo1, expo2, expo1, expo2 &
|
||
|
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||
|
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||
|
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||
|
|
||
|
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo1), expo2 &
|
||
|
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||
|
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||
|
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||
|
|
||
|
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo1, expo2 &
|
||
|
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||
|
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||
|
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||
|
|
||
|
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo1), expo2 &
|
||
|
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||
|
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||
|
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||
|
|
||
|
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo1, expo2 &
|
||
|
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||
|
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||
|
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||
|
|
||
|
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo1), expo2 &
|
||
|
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||
|
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||
|
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||
|
|
||
|
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo1, expo2 &
|
||
|
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||
|
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||
|
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||
|
|
||
|
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo1), expo2 &
|
||
|
, I_power(1), J_power(1), I_power(1), J_power(1) &
|
||
|
, I_power(2), J_power(2), I_power(2), J_power(2) &
|
||
|
, I_power(3), J_power(3), I_power(3), J_power(3) )
|
||
|
|
||
|
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||
|
|
||
|
schwartz_ij = coef2 * coef2 * 2.d0 * real(integral_tot)
|
||
|
|
||
|
if(schwartz_kl(0,0)*schwartz_ij < thr) cycle
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
if(schwartz_kl(0,r)*schwartz_ij < thr) cycle
|
||
|
|
||
|
coef3 = coef2 * ao_coef_norm_ord_transp_cosgtos(r,k)
|
||
|
expo3 = ao_expo_ord_transp_cosgtos(r,k)
|
||
|
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
if(schwartz_kl(s,r)*schwartz_ij < thr) cycle
|
||
|
|
||
|
coef4 = coef3 * ao_coef_norm_ord_transp_cosgtos(s,l)
|
||
|
expo4 = ao_expo_ord_transp_cosgtos(s,l)
|
||
|
|
||
|
integral1 = ERI_cosgtos( expo1, expo2, expo3, expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral2 = ERI_cosgtos( expo1, expo2, conjg(expo3), expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral3 = ERI_cosgtos( conjg(expo1), expo2, expo3, expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral4 = ERI_cosgtos( conjg(expo1), expo2, conjg(expo3), expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral5 = ERI_cosgtos( expo1, conjg(expo2), expo3, expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral6 = ERI_cosgtos( expo1, conjg(expo2), conjg(expo3), expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral7 = ERI_cosgtos( conjg(expo1), conjg(expo2), expo3, expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral8 = ERI_cosgtos( conjg(expo1), conjg(expo2), conjg(expo3), expo4 &
|
||
|
, I_power(1), J_power(1), K_power(1), L_power(1) &
|
||
|
, I_power(2), J_power(2), K_power(2), L_power(2) &
|
||
|
, I_power(3), J_power(3), K_power(3), L_power(3) )
|
||
|
|
||
|
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||
|
|
||
|
ao_two_e_integral_cosgtos_schwartz_accel = ao_two_e_integral_cosgtos_schwartz_accel &
|
||
|
+ coef4 * 2.d0 * real(integral_tot)
|
||
|
enddo ! s
|
||
|
enddo ! r
|
||
|
enddo ! q
|
||
|
enddo ! p
|
||
|
|
||
|
endif
|
||
|
|
||
|
deallocate(schwartz_kl)
|
||
|
|
||
|
end function ao_two_e_integral_cosgtos_schwartz_accel
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, ao_two_e_integral_cosgtos_schwartz, (ao_num,ao_num) ]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Needed to compute Schwartz inequalities
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, k
|
||
|
double precision :: ao_two_e_integral_cosgtos
|
||
|
|
||
|
ao_two_e_integral_cosgtos_schwartz(1,1) = ao_two_e_integral_cosgtos(1, 1, 1, 1)
|
||
|
|
||
|
!$OMP PARALLEL DO PRIVATE(i,k) &
|
||
|
!$OMP DEFAULT(NONE) &
|
||
|
!$OMP SHARED(ao_num, ao_two_e_integral_cosgtos_schwartz) &
|
||
|
!$OMP SCHEDULE(dynamic)
|
||
|
do i = 1, ao_num
|
||
|
do k = 1, i
|
||
|
ao_two_e_integral_cosgtos_schwartz(i,k) = dsqrt(ao_two_e_integral_cosgtos(i, i, k, k))
|
||
|
ao_two_e_integral_cosgtos_schwartz(k,i) = ao_two_e_integral_cosgtos_schwartz(i,k)
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END PARALLEL DO
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
complex*16 function general_primitive_integral_cosgtos( dim, P_new, P_center, fact_p, p, p_inv, iorder_p &
|
||
|
, Q_new, Q_center, fact_q, q, q_inv, iorder_q )
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! Computes the integral <pq|rs> where p,q,r,s are cos-cGTOS primitives
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: dim
|
||
|
integer, intent(in) :: iorder_p(3), iorder_q(3)
|
||
|
complex*16, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||
|
complex*16, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||
|
|
||
|
integer :: i, j, nx, ny, nz, n_Ix, n_Iy, n_Iz, iorder, n_pt_tmp, n_pt_out
|
||
|
double precision :: tmp_mod
|
||
|
double precision :: ppq_re, ppq_im, ppq_mod, sq_ppq_re, sq_ppq_im
|
||
|
complex*16 :: pq, pq_inv, pq_inv_2, p01_1, p01_2, p10_1, p10_2, ppq, sq_ppq
|
||
|
complex*16 :: rho, dist, const
|
||
|
complex*16 :: accu, tmp_p, tmp_q
|
||
|
complex*16 :: dx(0:max_dim), Ix_pol(0:max_dim), dy(0:max_dim), Iy_pol(0:max_dim), dz(0:max_dim), Iz_pol(0:max_dim)
|
||
|
complex*16 :: d1(0:max_dim), d_poly(0:max_dim)
|
||
|
|
||
|
complex*16 :: crint_sum
|
||
|
|
||
|
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||
|
|
||
|
general_primitive_integral_cosgtos = (0.d0, 0.d0)
|
||
|
|
||
|
pq = (0.5d0, 0.d0) * p_inv * q_inv
|
||
|
pq_inv = (0.5d0, 0.d0) / (p + q)
|
||
|
pq_inv_2 = pq_inv + pq_inv
|
||
|
p10_1 = q * pq ! 1/(2p)
|
||
|
p01_1 = p * pq ! 1/(2q)
|
||
|
p10_2 = pq_inv_2 * p10_1 * q ! 0.5d0*q/(pq + p*p)
|
||
|
p01_2 = pq_inv_2 * p01_1 * p ! 0.5d0*p/(q*q + pq)
|
||
|
|
||
|
! get \sqrt(p + q)
|
||
|
!ppq = p + q
|
||
|
!ppq_re = REAL (ppq)
|
||
|
!ppq_im = AIMAG(ppq)
|
||
|
!ppq_mod = dsqrt(ppq_re*ppq_re + ppq_im*ppq_im)
|
||
|
!sq_ppq_re = sq_op5 * dsqrt(ppq_re + ppq_mod)
|
||
|
!sq_ppq_im = 0.5d0 * ppq_im / sq_ppq_re
|
||
|
!sq_ppq = sq_ppq_re + (0.d0, 1.d0) * sq_ppq_im
|
||
|
sq_ppq = zsqrt(p + q)
|
||
|
|
||
|
! ---
|
||
|
|
||
|
iorder = iorder_p(1) + iorder_q(1) + iorder_p(1) + iorder_q(1)
|
||
|
|
||
|
do i = 0, iorder
|
||
|
Ix_pol(i) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
n_Ix = 0
|
||
|
do i = 0, iorder_p(1)
|
||
|
|
||
|
tmp_p = P_new(i,1)
|
||
|
tmp_mod = dsqrt(REAL(tmp_p)*REAL(tmp_p) + AIMAG(tmp_p)*AIMAG(tmp_p))
|
||
|
if(tmp_mod < thresh) cycle
|
||
|
|
||
|
do j = 0, iorder_q(1)
|
||
|
|
||
|
tmp_q = tmp_p * Q_new(j,1)
|
||
|
tmp_mod = dsqrt(REAL(tmp_q)*REAL(tmp_q) + AIMAG(tmp_q)*AIMAG(tmp_q))
|
||
|
if(tmp_mod < thresh) cycle
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call give_cpolynom_mult_center_x(P_center(1), Q_center(1), i, j, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx)
|
||
|
!DIR$ FORCEINLINE
|
||
|
call add_cpoly_multiply(dx, nx, tmp_q, Ix_pol, n_Ix)
|
||
|
enddo
|
||
|
enddo
|
||
|
if(n_Ix == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
! ---
|
||
|
|
||
|
iorder = iorder_p(2) + iorder_q(2) + iorder_p(2) + iorder_q(2)
|
||
|
|
||
|
do i = 0, iorder
|
||
|
Iy_pol(i) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
n_Iy = 0
|
||
|
do i = 0, iorder_p(2)
|
||
|
|
||
|
tmp_p = P_new(i,2)
|
||
|
tmp_mod = dsqrt(REAL(tmp_p)*REAL(tmp_p) + AIMAG(tmp_p)*AIMAG(tmp_p))
|
||
|
if(tmp_mod < thresh) cycle
|
||
|
|
||
|
do j = 0, iorder_q(2)
|
||
|
|
||
|
tmp_q = tmp_p * Q_new(j,2)
|
||
|
tmp_mod = dsqrt(REAL(tmp_q)*REAL(tmp_q) + AIMAG(tmp_q)*AIMAG(tmp_q))
|
||
|
if(tmp_mod < thresh) cycle
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call give_cpolynom_mult_center_x(P_center(2), Q_center(2), i, j, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny)
|
||
|
!DIR$ FORCEINLINE
|
||
|
call add_cpoly_multiply(dy, ny, tmp_q, Iy_pol, n_Iy)
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
if(n_Iy == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
! ---
|
||
|
|
||
|
iorder = iorder_p(3) + iorder_q(3) + iorder_p(3) + iorder_q(3)
|
||
|
|
||
|
do i = 0, iorder
|
||
|
Iz_pol(i) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
n_Iz = 0
|
||
|
do i = 0, iorder_p(3)
|
||
|
|
||
|
tmp_p = P_new(i,3)
|
||
|
tmp_mod = dsqrt(REAL(tmp_p)*REAL(tmp_p) + AIMAG(tmp_p)*AIMAG(tmp_p))
|
||
|
if(tmp_mod < thresh) cycle
|
||
|
|
||
|
do j = 0, iorder_q(3)
|
||
|
|
||
|
tmp_q = tmp_p * Q_new(j,3)
|
||
|
tmp_mod = dsqrt(REAL(tmp_q)*REAL(tmp_q) + AIMAG(tmp_q)*AIMAG(tmp_q))
|
||
|
if(tmp_mod < thresh) cycle
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call give_cpolynom_mult_center_x(P_center(3), Q_center(3), i, j, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz)
|
||
|
!DIR$ FORCEINLINE
|
||
|
call add_cpoly_multiply(dz, nz, tmp_q, Iz_pol, n_Iz)
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
if(n_Iz == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
! ---
|
||
|
|
||
|
rho = p * q * pq_inv_2
|
||
|
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
|
||
|
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
|
||
|
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
|
||
|
const = dist * rho
|
||
|
|
||
|
n_pt_tmp = n_Ix + n_Iy
|
||
|
do i = 0, n_pt_tmp
|
||
|
d_poly(i) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(Ix_pol, n_Ix, Iy_pol, n_Iy, d_poly, n_pt_tmp)
|
||
|
if(n_pt_tmp == -1) then
|
||
|
return
|
||
|
endif
|
||
|
n_pt_out = n_pt_tmp + n_Iz
|
||
|
do i = 0, n_pt_out
|
||
|
d1(i) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||
|
|
||
|
accu = crint_sum(n_pt_out, const, d1)
|
||
|
! print *, n_pt_out, real(d1(0:n_pt_out))
|
||
|
! print *, real(accu)
|
||
|
|
||
|
general_primitive_integral_cosgtos = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / sq_ppq
|
||
|
|
||
|
end function general_primitive_integral_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
complex*16 function ERI_cosgtos(alpha, beta, delta, gama, a_x, b_x, c_x, d_x, a_y, b_y, c_y, d_y, a_z, b_z, c_z, d_z)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! ATOMIC PRIMTIVE two-electron integral between the 4 primitives ::
|
||
|
! primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2)
|
||
|
! primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2)
|
||
|
! primitive_3 = x2**(c_x) y2**(c_y) z2**(c_z) exp(-delta * r2**2)
|
||
|
! primitive_4 = x2**(d_x) y2**(d_y) z2**(d_z) exp(- gama * r2**2)
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: a_x, b_x, c_x, d_x, a_y, b_y, c_y, d_y, a_z, b_z, c_z, d_z
|
||
|
complex*16, intent(in) :: delta, gama, alpha, beta
|
||
|
|
||
|
integer :: a_x_2, b_x_2, c_x_2, d_x_2, a_y_2, b_y_2, c_y_2, d_y_2, a_z_2, b_z_2, c_z_2, d_z_2
|
||
|
integer :: i, j, k, l, n_pt
|
||
|
integer :: nx, ny, nz
|
||
|
double precision :: ppq_re, ppq_im, ppq_mod, sq_ppq_re, sq_ppq_im
|
||
|
complex*16 :: p, q, ppq, sq_ppq, coeff, I_f
|
||
|
|
||
|
ERI_cosgtos = (0.d0, 0.d0)
|
||
|
|
||
|
ASSERT (REAL(alpha) >= 0.d0)
|
||
|
ASSERT (REAL(beta ) >= 0.d0)
|
||
|
ASSERT (REAL(delta) >= 0.d0)
|
||
|
ASSERT (REAL(gama ) >= 0.d0)
|
||
|
|
||
|
nx = a_x + b_x + c_x + d_x
|
||
|
if(iand(nx,1) == 1) then
|
||
|
ERI_cosgtos = (0.d0, 0.d0)
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
ny = a_y + b_y + c_y + d_y
|
||
|
if(iand(ny,1) == 1) then
|
||
|
ERI_cosgtos = (0.d0, 0.d0)
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
nz = a_z + b_z + c_z + d_z
|
||
|
if(iand(nz,1) == 1) then
|
||
|
ERI_cosgtos = (0.d0, 0.d0)
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
n_pt = shiftl(nx+ny+nz, 1)
|
||
|
|
||
|
p = alpha + beta
|
||
|
q = delta + gama
|
||
|
|
||
|
! get \sqrt(p + q)
|
||
|
!ppq = p + q
|
||
|
!ppq_re = REAL (ppq)
|
||
|
!ppq_im = AIMAG(ppq)
|
||
|
!ppq_mod = dsqrt(ppq_re*ppq_re + ppq_im*ppq_im)
|
||
|
!sq_ppq_re = sq_op5 * dsqrt(ppq_re + ppq_mod)
|
||
|
!sq_ppq_im = 0.5d0 * ppq_im / sq_ppq_re
|
||
|
!sq_ppq = sq_ppq_re + (0.d0, 1.d0) * sq_ppq_im
|
||
|
sq_ppq = zsqrt(p + q)
|
||
|
|
||
|
coeff = pi_5_2 / (p * q * sq_ppq)
|
||
|
if(n_pt == 0) then
|
||
|
ERI_cosgtos = coeff
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
call integrale_new_cosgtos(I_f, a_x, b_x, c_x, d_x, a_y, b_y, c_y, d_y, a_z, b_z, c_z, d_z, p, q, n_pt)
|
||
|
|
||
|
ERI_cosgtos = I_f * coeff
|
||
|
|
||
|
end function ERI_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
subroutine integrale_new_cosgtos(I_f, a_x, b_x, c_x, d_x, a_y, b_y, c_y, d_y, a_z, b_z, c_z, d_z, p, q, n_pt)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Calculates the integral of the polynomial :
|
||
|
!
|
||
|
! $I_{x_1}(a_x+b_x, c_x+d_x, p, q) \, I_{x_1}(a_y+b_y, c_y+d_y, p, q) \, I_{x_1}(a_z+b_z, c_z+d_z, p, q)$
|
||
|
! in $( 0 ; 1)$
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: n_pt
|
||
|
integer, intent(in) :: a_x, b_x, c_x, d_x, a_y, b_y, c_y, d_y, a_z, b_z, c_z, d_z
|
||
|
complex*16, intent(out) :: I_f
|
||
|
|
||
|
integer :: i, j, ix, iy, iz, jx, jy, jz, sx, sy, sz
|
||
|
complex*16 :: p, q
|
||
|
complex*16 :: pq_inv, p10_1, p10_2, p01_1, p01_2, pq_inv_2
|
||
|
complex*16 :: B00(n_pt_max_integrals), B10(n_pt_max_integrals), B01(n_pt_max_integrals)
|
||
|
complex*16 :: t1(n_pt_max_integrals), t2(n_pt_max_integrals)
|
||
|
|
||
|
|
||
|
ASSERT (n_pt > 1)
|
||
|
|
||
|
j = shiftr(n_pt, 1)
|
||
|
|
||
|
pq_inv = (0.5d0, 0.d0) / (p + q)
|
||
|
p10_1 = (0.5d0, 0.d0) / p
|
||
|
p01_1 = (0.5d0, 0.d0) / q
|
||
|
p10_2 = (0.5d0, 0.d0) * q /(p * q + p * p)
|
||
|
p01_2 = (0.5d0, 0.d0) * p /(q * q + q * p)
|
||
|
pq_inv_2 = pq_inv + pq_inv
|
||
|
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: t1, t2, B10, B01, B00
|
||
|
ix = a_x + b_x
|
||
|
jx = c_x + d_x
|
||
|
iy = a_y + b_y
|
||
|
jy = c_y + d_y
|
||
|
iz = a_z + b_z
|
||
|
jz = c_z + d_z
|
||
|
sx = ix + jx
|
||
|
sy = iy + jy
|
||
|
sz = iz + jz
|
||
|
|
||
|
do i = 1, n_pt
|
||
|
B10(i) = p10_1 - gauleg_t2(i, j) * p10_2
|
||
|
B01(i) = p01_1 - gauleg_t2(i, j) * p01_2
|
||
|
B00(i) = gauleg_t2(i, j) * pq_inv
|
||
|
enddo
|
||
|
|
||
|
if(sx > 0) then
|
||
|
call I_x1_new_cosgtos(ix, jx, B10, B01, B00, t1, n_pt)
|
||
|
else
|
||
|
do i = 1, n_pt
|
||
|
t1(i) = (1.d0, 0.d0)
|
||
|
enddo
|
||
|
endif
|
||
|
|
||
|
if(sy > 0) then
|
||
|
call I_x1_new_cosgtos(iy, jy, B10, B01, B00, t2, n_pt)
|
||
|
do i = 1, n_pt
|
||
|
t1(i) = t1(i) * t2(i)
|
||
|
enddo
|
||
|
endif
|
||
|
|
||
|
if(sz > 0) then
|
||
|
call I_x1_new_cosgtos(iz, jz, B10, B01, B00, t2, n_pt)
|
||
|
do i = 1, n_pt
|
||
|
t1(i) = t1(i) * t2(i)
|
||
|
enddo
|
||
|
endif
|
||
|
|
||
|
I_f = (0.d0, 0.d0)
|
||
|
do i = 1, n_pt
|
||
|
I_f += gauleg_w(i, j) * t1(i)
|
||
|
enddo
|
||
|
|
||
|
end subroutine integrale_new_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
recursive subroutine I_x1_new_cosgtos(a, c, B_10, B_01, B_00, res, n_pt)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! recursive function involved in the two-electron integral
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: a, c, n_pt
|
||
|
complex*16, intent(in) :: B_10(n_pt_max_integrals), B_01(n_pt_max_integrals), B_00(n_pt_max_integrals)
|
||
|
complex*16, intent(out) :: res(n_pt_max_integrals)
|
||
|
|
||
|
integer :: i
|
||
|
complex*16 :: res2(n_pt_max_integrals)
|
||
|
|
||
|
if(c < 0) then
|
||
|
|
||
|
do i = 1, n_pt
|
||
|
res(i) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
else if (a == 0) then
|
||
|
|
||
|
call I_x2_new_cosgtos(c, B_10, B_01, B_00, res, n_pt)
|
||
|
|
||
|
else if (a == 1) then
|
||
|
|
||
|
call I_x2_new_cosgtos(c-1, B_10, B_01, B_00, res, n_pt)
|
||
|
do i = 1, n_pt
|
||
|
res(i) = dble(c) * B_00(i) * res(i)
|
||
|
enddo
|
||
|
|
||
|
else
|
||
|
|
||
|
call I_x1_new_cosgtos(a-2, c , B_10, B_01, B_00, res , n_pt)
|
||
|
call I_x1_new_cosgtos(a-1, c-1, B_10, B_01, B_00, res2, n_pt)
|
||
|
do i = 1, n_pt
|
||
|
res(i) = dble(a-1) * B_10(i) * res(i) + dble(c) * B_00(i) * res2(i)
|
||
|
enddo
|
||
|
|
||
|
endif
|
||
|
|
||
|
end subroutine I_x1_new_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
recursive subroutine I_x2_new_cosgtos(c, B_10, B_01, B_00, res, n_pt)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! recursive function involved in the two-electron integral
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: c, n_pt
|
||
|
complex*16, intent(in) :: B_10(n_pt_max_integrals), B_01(n_pt_max_integrals), B_00(n_pt_max_integrals)
|
||
|
complex*16, intent(out) :: res(n_pt_max_integrals)
|
||
|
|
||
|
integer :: i
|
||
|
|
||
|
if(c == 1) then
|
||
|
|
||
|
do i = 1, n_pt
|
||
|
res(i) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
elseif(c == 0) then
|
||
|
|
||
|
do i = 1, n_pt
|
||
|
res(i) = (1.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
else
|
||
|
|
||
|
call I_x1_new_cosgtos(0, c-2, B_10, B_01, B_00, res, n_pt)
|
||
|
do i = 1, n_pt
|
||
|
res(i) = dble(c-1) * B_01(i) * res(i)
|
||
|
enddo
|
||
|
|
||
|
endif
|
||
|
|
||
|
end subroutine I_x2_new_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
subroutine give_cpolynom_mult_center_x( P_center, Q_center, a_x, d_x, p, q, n_pt_in &
|
||
|
, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, d, n_pt_out)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! subroutine that returns the explicit polynom in term of the "t"
|
||
|
! variable of the following polynoms :
|
||
|
!
|
||
|
! $I_{x_1}(a_x,d_x,p,q) \, I_{x_1}(a_y,d_y,p,q) \ I_{x_1}(a_z,d_z,p,q)$
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: n_pt_in, a_x, d_x
|
||
|
complex*16, intent(in) :: P_center, Q_center, p, q, pq_inv, p10_1, p01_1, p10_2, p01_2, pq_inv_2
|
||
|
integer, intent(out) :: n_pt_out
|
||
|
complex*16, intent(out) :: d(0:max_dim)
|
||
|
|
||
|
integer :: n_pt1, i
|
||
|
complex*16 :: B10(0:2), B01(0:2), B00(0:2), C00(0:2), D00(0:2)
|
||
|
|
||
|
ASSERT (n_pt_in >= 0)
|
||
|
|
||
|
B10(0) = p10_1
|
||
|
B10(1) = (0.d0, 0.d0)
|
||
|
B10(2) = -p10_2
|
||
|
|
||
|
B01(0) = p01_1
|
||
|
B01(1) = (0.d0, 0.d0)
|
||
|
B01(2) = -p01_2
|
||
|
|
||
|
B00(0) = (0.d0, 0.d0)
|
||
|
B00(1) = (0.d0, 0.d0)
|
||
|
B00(2) = pq_inv
|
||
|
|
||
|
C00(0) = (0.d0, 0.d0)
|
||
|
C00(1) = (0.d0, 0.d0)
|
||
|
C00(2) = -q * (P_center - Q_center) * pq_inv_2
|
||
|
|
||
|
D00(0) = (0.d0, 0.d0)
|
||
|
D00(1) = (0.d0, 0.d0)
|
||
|
D00(2) = -p * (Q_center - P_center) * pq_inv_2
|
||
|
|
||
|
do i = 0, n_pt_in
|
||
|
d(i) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
n_pt1 = n_pt_in
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call I_x1_pol_mult_cosgtos(a_x, d_x, B10, B01, B00, C00, D00, d, n_pt1, n_pt_in)
|
||
|
n_pt_out = n_pt1
|
||
|
|
||
|
! print *, ' '
|
||
|
! print *, a_x, d_x
|
||
|
! print *, real(B10), real(B01), real(B00), real(C00), real(D00)
|
||
|
! print *, n_pt1, real(d(0:n_pt1))
|
||
|
! print *, ' '
|
||
|
|
||
|
if(n_pt1 < 0) then
|
||
|
n_pt_out = -1
|
||
|
do i = 0, n_pt_in
|
||
|
d(i) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
end subroutine give_cpolynom_mult_center_x
|
||
|
|
||
|
! ---
|
||
|
|
||
|
subroutine I_x1_pol_mult_cosgtos(a, c, B_10, B_01, B_00, C_00, D_00, d, nd, n_pt_in)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Recursive function involved in the two-electron integral
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: n_pt_in, a, c
|
||
|
complex*16, intent(in) :: B_10(0:2), B_01(0:2), B_00(0:2), C_00(0:2), D_00(0:2)
|
||
|
integer, intent(inout) :: nd
|
||
|
complex*16, intent(inout) :: d(0:max_dim)
|
||
|
|
||
|
if( (c >= 0) .and. (nd >= 0) ) then
|
||
|
|
||
|
if(a == 1) then
|
||
|
call I_x1_pol_mult_a1_cosgtos(c, B_10, B_01, B_00, C_00, D_00, d, nd, n_pt_in)
|
||
|
else if(a == 2) then
|
||
|
call I_x1_pol_mult_a2_cosgtos(c, B_10, B_01, B_00, C_00, D_00, d, nd, n_pt_in)
|
||
|
else if(a > 2) then
|
||
|
call I_x1_pol_mult_recurs_cosgtos(a, c, B_10, B_01, B_00, C_00, D_00, d, nd, n_pt_in)
|
||
|
else ! a == 0
|
||
|
|
||
|
if(c == 0)then
|
||
|
nd = 0
|
||
|
d(0) = (1.d0, 0.d0)
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
call I_x2_pol_mult_cosgtos(c, B_10, B_01, B_00, C_00, D_00, d, nd, n_pt_in)
|
||
|
endif
|
||
|
|
||
|
else
|
||
|
|
||
|
nd = -1
|
||
|
|
||
|
endif
|
||
|
|
||
|
end subroutine I_x1_pol_mult_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
recursive subroutine I_x1_pol_mult_recurs_cosgtos(a, c, B_10, B_01, B_00, C_00, D_00, d, nd, n_pt_in)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Recursive function involved in the two-electron integral
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: n_pt_in, a, c
|
||
|
complex*16, intent(in) :: B_10(0:2), B_01(0:2), B_00(0:2), C_00(0:2), D_00(0:2)
|
||
|
integer, intent(inout) :: nd
|
||
|
complex*16, intent(inout) :: d(0:max_dim)
|
||
|
|
||
|
integer :: nx, ix, iy, ny
|
||
|
complex*16 :: X(0:max_dim)
|
||
|
complex*16 :: Y(0:max_dim)
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
|
||
|
|
||
|
ASSERT (a > 2)
|
||
|
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, n_pt_in
|
||
|
X(ix) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
nx = 0
|
||
|
if(a == 3) then
|
||
|
call I_x1_pol_mult_a1_cosgtos(c, B_10, B_01, B_00, C_00, D_00, X, nx, n_pt_in)
|
||
|
elseif(a == 4) then
|
||
|
call I_x1_pol_mult_a2_cosgtos(c, B_10, B_01, B_00, C_00, D_00, X, nx, n_pt_in)
|
||
|
else
|
||
|
ASSERT (a >= 5)
|
||
|
call I_x1_pol_mult_recurs_cosgtos(a-2, c, B_10, B_01, B_00, C_00, D_00, X, nx, n_pt_in)
|
||
|
endif
|
||
|
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, nx
|
||
|
X(ix) *= dble(a-1)
|
||
|
enddo
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(X, nx, B_10, 2, d, nd)
|
||
|
nx = nd
|
||
|
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, n_pt_in
|
||
|
X(ix) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
if(c > 0) then
|
||
|
|
||
|
if(a == 3) then
|
||
|
call I_x1_pol_mult_a2_cosgtos(c-1, B_10, B_01, B_00, C_00, D_00, X, nx, n_pt_in)
|
||
|
else
|
||
|
ASSERT(a >= 4)
|
||
|
call I_x1_pol_mult_recurs_cosgtos(a-1, c-1, B_10, B_01, B_00, C_00, D_00, X, nx, n_pt_in)
|
||
|
endif
|
||
|
|
||
|
if(c > 1) then
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, nx
|
||
|
X(ix) *= dble(c)
|
||
|
enddo
|
||
|
endif
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(X, nx, B_00, 2, d, nd)
|
||
|
|
||
|
endif
|
||
|
|
||
|
ny = 0
|
||
|
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, n_pt_in
|
||
|
Y(ix) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
ASSERT (a > 2)
|
||
|
|
||
|
if(a == 3) then
|
||
|
call I_x1_pol_mult_a2_cosgtos(c, B_10, B_01, B_00, C_00, D_00, Y, ny, n_pt_in)
|
||
|
else
|
||
|
ASSERT(a >= 4)
|
||
|
call I_x1_pol_mult_recurs_cosgtos(a-1, c, B_10, B_01, B_00, C_00, D_00, Y, ny, n_pt_in)
|
||
|
endif
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(Y, ny, C_00, 2, d, nd)
|
||
|
|
||
|
end subroutine I_x1_pol_mult_recurs_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
recursive subroutine I_x1_pol_mult_a1_cosgtos(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Recursive function involved in the two-electron integral
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: n_pt_in, c
|
||
|
complex*16, intent(in) :: B_10(0:2), B_01(0:2), B_00(0:2), C_00(0:2), D_00(0:2)
|
||
|
integer, intent(inout) :: nd
|
||
|
complex*16, intent(inout) :: d(0:max_dim)
|
||
|
|
||
|
integer :: nx, ix, iy, ny
|
||
|
complex*16 :: X(0:max_dim)
|
||
|
complex*16 :: Y(0:max_dim)
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
|
||
|
|
||
|
if( (c < 0) .or. (nd < 0) ) then
|
||
|
nd = -1
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
nx = nd
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, n_pt_in
|
||
|
X(ix) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
call I_x2_pol_mult_cosgtos(c-1, B_10, B_01, B_00, C_00, D_00, X, nx, n_pt_in)
|
||
|
|
||
|
if(c > 1) then
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, nx
|
||
|
X(ix) *= dble(c)
|
||
|
enddo
|
||
|
endif
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(X, nx, B_00, 2, d, nd)
|
||
|
|
||
|
ny = 0
|
||
|
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, n_pt_in
|
||
|
Y(ix) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
call I_x2_pol_mult_cosgtos(c, B_10, B_01, B_00, C_00, D_00, Y, ny, n_pt_in)
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(Y, ny, C_00, 2, d, nd)
|
||
|
|
||
|
end subroutine I_x1_pol_mult_a1_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
recursive subroutine I_x1_pol_mult_a2_cosgtos(c, B_10, B_01, B_00, C_00, D_00, d, nd, n_pt_in)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Recursive function involved in the two-electron integral
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: n_pt_in, c
|
||
|
complex*16, intent(in) :: B_10(0:2), B_01(0:2), B_00(0:2), C_00(0:2), D_00(0:2)
|
||
|
integer, intent(inout) :: nd
|
||
|
complex*16, intent(inout) :: d(0:max_dim)
|
||
|
|
||
|
integer :: nx, ix, iy, ny
|
||
|
complex*16 :: X(0:max_dim)
|
||
|
complex*16 :: Y(0:max_dim)
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
|
||
|
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, n_pt_in
|
||
|
X(ix) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
nx = 0
|
||
|
call I_x2_pol_mult_cosgtos(c, B_10, B_01, B_00, C_00, D_00, X, nx, n_pt_in)
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(X, nx, B_10, 2, d, nd)
|
||
|
|
||
|
nx = nd
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, n_pt_in
|
||
|
X(ix) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call I_x1_pol_mult_a1_cosgtos(c-1, B_10, B_01, B_00, C_00, D_00, X, nx, n_pt_in)
|
||
|
|
||
|
if (c>1) then
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, nx
|
||
|
X(ix) *= dble(c)
|
||
|
enddo
|
||
|
endif
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(X, nx, B_00, 2, d, nd)
|
||
|
|
||
|
ny = 0
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix = 0, n_pt_in
|
||
|
Y(ix) = 0.d0
|
||
|
enddo
|
||
|
!DIR$ FORCEINLINE
|
||
|
call I_x1_pol_mult_a1_cosgtos(c, B_10, B_01, B_00, C_00, D_00, Y, ny, n_pt_in)
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(Y, ny, C_00, 2, d, nd)
|
||
|
|
||
|
end subroutine I_x1_pol_mult_a2_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
recursive subroutine I_x2_pol_mult_cosgtos(c, B_10, B_01, B_00, C_00, D_00, d, nd, dim)
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Recursive function involved in the two-electron integral
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
integer, intent(in) :: dim, c
|
||
|
complex*16, intent(in) :: B_10(0:2), B_01(0:2), B_00(0:2), C_00(0:2), D_00(0:2)
|
||
|
integer, intent(inout) :: nd
|
||
|
complex*16, intent(inout) :: d(0:max_dim)
|
||
|
|
||
|
integer :: i
|
||
|
integer :: nx, ix, ny
|
||
|
complex*16 :: X(0:max_dim), Y(0:max_dim)
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X, Y
|
||
|
|
||
|
select case (c)
|
||
|
|
||
|
case (0)
|
||
|
nd = 0
|
||
|
d(0) = (1.d0, 0.d0)
|
||
|
return
|
||
|
|
||
|
case (:-1)
|
||
|
nd = -1
|
||
|
return
|
||
|
|
||
|
case (1)
|
||
|
nd = 2
|
||
|
d(0) = D_00(0)
|
||
|
d(1) = D_00(1)
|
||
|
d(2) = D_00(2)
|
||
|
return
|
||
|
|
||
|
case (2)
|
||
|
nd = 2
|
||
|
d(0) = B_01(0)
|
||
|
d(1) = B_01(1)
|
||
|
d(2) = B_01(2)
|
||
|
|
||
|
ny = 2
|
||
|
Y(0) = D_00(0)
|
||
|
Y(1) = D_00(1)
|
||
|
Y(2) = D_00(2)
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(Y, ny, D_00, 2, d, nd)
|
||
|
return
|
||
|
|
||
|
case default
|
||
|
|
||
|
!DIR$ LOOP COUNT(6)
|
||
|
do ix = 0, c+c
|
||
|
X(ix) = (0.d0, 0.d0)
|
||
|
enddo
|
||
|
nx = 0
|
||
|
call I_x2_pol_mult_cosgtos(c-2, B_10, B_01, B_00, C_00, D_00, X, nx, dim)
|
||
|
|
||
|
!DIR$ LOOP COUNT(6)
|
||
|
do ix = 0, nx
|
||
|
X(ix) *= dble(c-1)
|
||
|
enddo
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(X, nx, B_01, 2, d, nd)
|
||
|
|
||
|
ny = 0
|
||
|
!DIR$ LOOP COUNT(6)
|
||
|
do ix = 0, c+c
|
||
|
Y(ix) = 0.d0
|
||
|
enddo
|
||
|
call I_x2_pol_mult_cosgtos(c-1, B_10, B_01, B_00, C_00, D_00, Y, ny, dim)
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call multiply_cpoly(Y, ny, D_00, 2, d, nd)
|
||
|
|
||
|
end select
|
||
|
|
||
|
end subroutine I_x2_pol_mult_cosgtos
|
||
|
|
||
|
! ---
|
||
|
|
||
|
|