mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-13 08:53:38 +01:00
122 lines
4.5 KiB
Fortran
122 lines
4.5 KiB
Fortran
|
double precision function ovlp_stg_gauss_int_phi_ij(D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||
|
BEGIN_DOC
|
||
|
! Computes the following integral :
|
||
|
!
|
||
|
! .. math::
|
||
|
!
|
||
|
! \int dr exp(-gam (r - D)) exp(-delta * (r -D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
|
||
|
double precision, intent(in) :: delta ! gaussian in r-r_D
|
||
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||
|
integer, intent(in) :: power_A(3),power_B(3)
|
||
|
|
||
|
integer :: i
|
||
|
double precision :: integral,gama_gauss
|
||
|
double precision, allocatable :: expos_slat(:)
|
||
|
allocate(expos_slat(n_max_fit_slat))
|
||
|
double precision :: overlap_gauss_r12
|
||
|
ovlp_stg_gauss_int_phi_ij = 0.d0
|
||
|
call expo_fit_slater_gam(gam,expos_slat)
|
||
|
do i = 1, n_max_fit_slat
|
||
|
gama_gauss = expos_slat(i)+delta
|
||
|
integral = overlap_gauss_r12(D_center,gama_gauss,A_center,B_center,power_A,power_B,alpha,beta)
|
||
|
ovlp_stg_gauss_int_phi_ij += coef_fit_slat_gauss(i) * integral
|
||
|
enddo
|
||
|
end
|
||
|
|
||
|
|
||
|
double precision function erf_mu_stg_gauss_int_phi_ij(D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||
|
BEGIN_DOC
|
||
|
! Computes the following integral :
|
||
|
!
|
||
|
! .. math::
|
||
|
!
|
||
|
! \int dr exp(-gam(r - D)-delta(r - D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||
|
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'constants.include.F'
|
||
|
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
|
||
|
double precision, intent(in) :: delta ! gaussian in r-r_D
|
||
|
double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function
|
||
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||
|
integer, intent(in) :: power_A(3),power_B(3)
|
||
|
|
||
|
integer :: i
|
||
|
double precision :: NAI_pol_mult_erf_gauss_r12
|
||
|
double precision :: integral,gama_gauss
|
||
|
double precision, allocatable :: expos_slat(:)
|
||
|
allocate(expos_slat(n_max_fit_slat))
|
||
|
erf_mu_stg_gauss_int_phi_ij = 0.d0
|
||
|
call expo_fit_slater_gam(gam,expos_slat)
|
||
|
do i = 1, n_max_fit_slat
|
||
|
gama_gauss = expos_slat(i) + delta
|
||
|
integral = NAI_pol_mult_erf_gauss_r12(D_center,gama_gauss,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||
|
erf_mu_stg_gauss_int_phi_ij += coef_fit_slat_gauss(i) * integral
|
||
|
enddo
|
||
|
end
|
||
|
|
||
|
double precision function overlap_stg_gauss(D_center,gam,A_center,B_center,power_A,power_B,alpha,beta)
|
||
|
BEGIN_DOC
|
||
|
! Computes the following integral :
|
||
|
!
|
||
|
! .. math::
|
||
|
!
|
||
|
! \int dr exp(-gam (r - D)) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
double precision, intent(in) :: D_center(3), gam ! pure Slater "D"
|
||
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||
|
integer, intent(in) :: power_A(3),power_B(3)
|
||
|
|
||
|
integer :: i
|
||
|
double precision :: expos_slat(n_max_fit_slat),integral,delta
|
||
|
double precision :: overlap_gauss_r12
|
||
|
overlap_stg_gauss = 0.d0
|
||
|
call expo_fit_slater_gam(gam,expos_slat)
|
||
|
do i = 1, n_max_fit_slat
|
||
|
delta = expos_slat(i)
|
||
|
integral = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||
|
overlap_stg_gauss += coef_fit_slat_gauss(i) * integral
|
||
|
enddo
|
||
|
end
|
||
|
|
||
|
double precision function erf_mu_stg_gauss(D_center,gam,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||
|
BEGIN_DOC
|
||
|
! Computes the following integral :
|
||
|
!
|
||
|
! .. math::
|
||
|
!
|
||
|
! \int dr exp(-gam(r - D)) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||
|
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
include 'constants.include.F'
|
||
|
double precision, intent(in) :: D_center(3), gam ! pure Slater "D"
|
||
|
double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function
|
||
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||
|
integer, intent(in) :: power_A(3),power_B(3)
|
||
|
|
||
|
|
||
|
integer :: i
|
||
|
double precision :: expos_slat(n_max_fit_slat),integral,delta
|
||
|
double precision :: NAI_pol_mult_erf_gauss_r12
|
||
|
erf_mu_stg_gauss = 0.d0
|
||
|
call expo_fit_slater_gam(gam,expos_slat)
|
||
|
do i = 1, n_max_fit_slat
|
||
|
delta = expos_slat(i)
|
||
|
integral = NAI_pol_mult_erf_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||
|
erf_mu_stg_gauss += coef_fit_slat_gauss(i) * integral
|
||
|
enddo
|
||
|
end
|