2019-01-25 11:39:31 +01:00
|
|
|
BEGIN_PROVIDER [double precision, extra_e_contrib_density]
|
|
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
|
|
|
! Extra contribution to the SCF energy coming from the density.
|
|
|
|
!
|
|
|
|
! For a Hartree-Fock calculation: extra_e_contrib_density = 0
|
|
|
|
!
|
|
|
|
! For a Kohn-Sham or Range-separated Kohn-Sham: the exchange/correlation - trace of the V_xc potential
|
|
|
|
END_DOC
|
|
|
|
extra_e_contrib_density = 0.D0
|
|
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, HF_energy]
|
|
|
|
&BEGIN_PROVIDER [ double precision, HF_two_electron_energy]
|
|
|
|
&BEGIN_PROVIDER [ double precision, HF_one_electron_energy]
|
|
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
|
|
|
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
|
|
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
|
|
HF_energy = nuclear_repulsion
|
2019-02-06 16:49:32 +01:00
|
|
|
HF_two_electron_energy = 0.d0
|
|
|
|
HF_one_electron_energy = 0.d0
|
2019-01-25 11:39:31 +01:00
|
|
|
do j=1,ao_num
|
|
|
|
do i=1,ao_num
|
|
|
|
HF_two_electron_energy += 0.5d0 * ( ao_two_e_integral_alpha(i,j) * SCF_density_matrix_ao_alpha(i,j) &
|
|
|
|
+ao_two_e_integral_beta(i,j) * SCF_density_matrix_ao_beta(i,j) )
|
|
|
|
HF_one_electron_energy += ao_one_e_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
HF_energy += HF_two_electron_energy + HF_one_electron_energy
|
|
|
|
END_PROVIDER
|
|
|
|
|