mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-07 14:03:37 +01:00
304 lines
9.9 KiB
Fortran
304 lines
9.9 KiB
Fortran
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! :math:`\langle \chi_A | -0.5 \Delta \tau_{1b} | \chi_B \rangle`
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
integer :: num_A, num_B
|
||
|
integer :: power_A(3), power_B(3)
|
||
|
integer :: i, j, k, l, m
|
||
|
double precision :: alpha, beta, gama, coef
|
||
|
double precision :: A_center(3), B_center(3), C_center(3)
|
||
|
double precision :: c1, c2, c
|
||
|
|
||
|
integer :: dim1
|
||
|
double precision :: overlap_y, d_a_2, overlap_z, overlap
|
||
|
|
||
|
double precision :: int_gauss_r0, int_gauss_r2
|
||
|
|
||
|
PROVIDE j1b_type j1b_pen j1b_coeff
|
||
|
|
||
|
! --------------------------------------------------------------------------------
|
||
|
! -- Dummy call to provide everything
|
||
|
dim1 = 100
|
||
|
A_center(:) = 0.d0
|
||
|
B_center(:) = 1.d0
|
||
|
alpha = 1.d0
|
||
|
beta = 0.1d0
|
||
|
power_A(:) = 1
|
||
|
power_B(:) = 0
|
||
|
call overlap_gaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||
|
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
|
||
|
! --------------------------------------------------------------------------------
|
||
|
|
||
|
j1b_gauss_hermI(1:ao_num,1:ao_num) = 0.d0
|
||
|
|
||
|
if(j1b_type .eq. 1) then
|
||
|
! \tau_1b = \sum_iA -[1 - exp(-alpha_A r_iA^2)]
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, &
|
||
|
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||
|
!$OMP num_A, num_B, c1, c2, c) &
|
||
|
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||
|
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||
|
!$OMP ao_coef_normalized_ordered_transp, &
|
||
|
!$OMP nucl_num, j1b_pen, j1b_gauss_hermI)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do j = 1, ao_num
|
||
|
num_A = ao_nucl(j)
|
||
|
power_A(1:3) = ao_power(j,1:3)
|
||
|
A_center(1:3) = nucl_coord(num_A,1:3)
|
||
|
|
||
|
do i = 1, ao_num
|
||
|
num_B = ao_nucl(i)
|
||
|
power_B(1:3) = ao_power(i,1:3)
|
||
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
||
|
|
||
|
do l = 1, ao_prim_num(j)
|
||
|
alpha = ao_expo_ordered_transp(l,j)
|
||
|
|
||
|
do m = 1, ao_prim_num(i)
|
||
|
beta = ao_expo_ordered_transp(m,i)
|
||
|
|
||
|
c = 0.d0
|
||
|
do k = 1, nucl_num
|
||
|
gama = j1b_pen(k)
|
||
|
C_center(1:3) = nucl_coord(k,1:3)
|
||
|
|
||
|
! < XA | exp[-gama r_C^2] | XB >
|
||
|
c1 = int_gauss_r0( A_center, B_center, C_center &
|
||
|
, power_A, power_B, alpha, beta, gama )
|
||
|
|
||
|
! < XA | r_A^2 exp[-gama r_C^2] | XB >
|
||
|
c2 = int_gauss_r2( A_center, B_center, C_center &
|
||
|
, power_A, power_B, alpha, beta, gama )
|
||
|
|
||
|
c = c + 3.d0 * gama * c1 - 2.d0 * gama * gama * c2
|
||
|
enddo
|
||
|
|
||
|
j1b_gauss_hermI(i,j) = j1b_gauss_hermI(i,j) &
|
||
|
+ ao_coef_normalized_ordered_transp(l,j) &
|
||
|
* ao_coef_normalized_ordered_transp(m,i) * c
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
elseif(j1b_type .eq. 2) then
|
||
|
! \tau_1b = \sum_iA [c_A exp(-alpha_A r_iA^2)]
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, coef, &
|
||
|
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||
|
!$OMP num_A, num_B, c1, c2, c) &
|
||
|
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||
|
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||
|
!$OMP ao_coef_normalized_ordered_transp, &
|
||
|
!$OMP nucl_num, j1b_pen, j1b_gauss_hermI, &
|
||
|
!$OMP j1b_coeff)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do j = 1, ao_num
|
||
|
num_A = ao_nucl(j)
|
||
|
power_A(1:3) = ao_power(j,1:3)
|
||
|
A_center(1:3) = nucl_coord(num_A,1:3)
|
||
|
|
||
|
do i = 1, ao_num
|
||
|
num_B = ao_nucl(i)
|
||
|
power_B(1:3) = ao_power(i,1:3)
|
||
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
||
|
|
||
|
do l = 1, ao_prim_num(j)
|
||
|
alpha = ao_expo_ordered_transp(l,j)
|
||
|
|
||
|
do m = 1, ao_prim_num(i)
|
||
|
beta = ao_expo_ordered_transp(m,i)
|
||
|
|
||
|
c = 0.d0
|
||
|
do k = 1, nucl_num
|
||
|
gama = j1b_pen (k)
|
||
|
coef = j1b_coeff(k)
|
||
|
C_center(1:3) = nucl_coord(k,1:3)
|
||
|
|
||
|
! < XA | exp[-gama r_C^2] | XB >
|
||
|
c1 = int_gauss_r0( A_center, B_center, C_center &
|
||
|
, power_A, power_B, alpha, beta, gama )
|
||
|
|
||
|
! < XA | r_A^2 exp[-gama r_C^2] | XB >
|
||
|
c2 = int_gauss_r2( A_center, B_center, C_center &
|
||
|
, power_A, power_B, alpha, beta, gama )
|
||
|
|
||
|
c = c + 3.d0 * gama * coef * c1 - 2.d0 * gama * gama * coef * c2
|
||
|
enddo
|
||
|
|
||
|
j1b_gauss_hermI(i,j) = j1b_gauss_hermI(i,j) &
|
||
|
+ ao_coef_normalized_ordered_transp(l,j) &
|
||
|
* ao_coef_normalized_ordered_transp(m,i) * c
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
endif
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
!_____________________________________________________________________________________________________________
|
||
|
!
|
||
|
! < XA | exp[-gama r_C^2] | XB >
|
||
|
!
|
||
|
double precision function int_gauss_r0(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||
|
|
||
|
! for max_dim
|
||
|
include 'constants.include.F'
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
integer , intent(in) :: power_A(3), power_B(3)
|
||
|
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||
|
double precision, intent(in) :: alpha, beta, gama
|
||
|
|
||
|
integer :: i, power_C, dim1
|
||
|
integer :: iorder(3)
|
||
|
integer :: nmax
|
||
|
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||
|
double precision :: cx, cy, cz
|
||
|
|
||
|
double precision :: overlap_gaussian_x
|
||
|
|
||
|
dim1 = 100
|
||
|
|
||
|
! P_AB(0:max_dim,3) polynomial
|
||
|
! AB_center(3) new center
|
||
|
! AB_expo new exponent
|
||
|
! fact_AB constant factor
|
||
|
! iorder(3) i_order(i) = order of the polynomials
|
||
|
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||
|
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||
|
|
||
|
if( fact_AB .lt. 1d-20 ) then
|
||
|
int_gauss_r0 = 0.d0
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
power_C = 0
|
||
|
cx = 0.d0
|
||
|
do i = 0, iorder(1)
|
||
|
cx = cx + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
cy = 0.d0
|
||
|
do i = 0, iorder(2)
|
||
|
cy = cy + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
cz = 0.d0
|
||
|
do i = 0, iorder(3)
|
||
|
cz = cz + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
|
||
|
int_gauss_r0 = fact_AB * cx * cy * cz
|
||
|
|
||
|
return
|
||
|
end function int_gauss_r0
|
||
|
!_____________________________________________________________________________________________________________
|
||
|
!_____________________________________________________________________________________________________________
|
||
|
|
||
|
|
||
|
|
||
|
!_____________________________________________________________________________________________________________
|
||
|
!
|
||
|
! < XA | r_C^2 exp[-gama r_C^2] | XB >
|
||
|
!
|
||
|
double precision function int_gauss_r2(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||
|
|
||
|
! for max_dim
|
||
|
include 'constants.include.F'
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
integer, intent(in) :: power_A(3), power_B(3)
|
||
|
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||
|
double precision, intent(in) :: alpha, beta, gama
|
||
|
|
||
|
integer :: i, power_C, dim1
|
||
|
integer :: iorder(3)
|
||
|
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||
|
double precision :: cx0, cy0, cz0, cx, cy, cz
|
||
|
double precision :: int_tmp
|
||
|
|
||
|
double precision :: overlap_gaussian_x
|
||
|
|
||
|
dim1 = 100
|
||
|
|
||
|
! P_AB(0:max_dim,3) polynomial centered on AB_center
|
||
|
! AB_center(3) new center
|
||
|
! AB_expo new exponent
|
||
|
! fact_AB constant factor
|
||
|
! iorder(3) i_order(i) = order of the polynomials
|
||
|
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||
|
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||
|
|
||
|
! <<<
|
||
|
! to avoid multi-evaluation
|
||
|
power_C = 0
|
||
|
|
||
|
cx0 = 0.d0
|
||
|
do i = 0, iorder(1)
|
||
|
cx0 = cx0 + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
cy0 = 0.d0
|
||
|
do i = 0, iorder(2)
|
||
|
cy0 = cy0 + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
cz0 = 0.d0
|
||
|
do i = 0, iorder(3)
|
||
|
cz0 = cz0 + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
! >>>
|
||
|
|
||
|
int_tmp = 0.d0
|
||
|
|
||
|
power_C = 2
|
||
|
|
||
|
! ( x - XC)^2
|
||
|
cx = 0.d0
|
||
|
do i = 0, iorder(1)
|
||
|
cx = cx + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
int_tmp += cx * cy0 * cz0
|
||
|
|
||
|
! ( y - YC)^2
|
||
|
cy = 0.d0
|
||
|
do i = 0, iorder(2)
|
||
|
cy = cy + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
int_tmp += cx0 * cy * cz0
|
||
|
|
||
|
! ( z - ZC)^2
|
||
|
cz = 0.d0
|
||
|
do i = 0, iorder(3)
|
||
|
cz = cz + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||
|
enddo
|
||
|
int_tmp += cx0 * cy0 * cz
|
||
|
|
||
|
int_gauss_r2 = fact_AB * int_tmp
|
||
|
|
||
|
return
|
||
|
end function int_gauss_r2
|
||
|
!_____________________________________________________________________________________________________________
|
||
|
!_____________________________________________________________________________________________________________
|
||
|
|
||
|
|