9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-14 17:33:38 +01:00
qp2/src/determinants/h_apply.irp.f

481 lines
14 KiB
Fortran
Raw Normal View History

2019-01-25 11:39:31 +01:00
use bitmasks
use omp_lib
type H_apply_buffer_type
integer :: N_det
integer :: sze
integer(bit_kind), pointer :: det(:,:,:)
double precision , pointer :: coef(:,:)
double precision , pointer :: e2(:,:)
end type H_apply_buffer_type
type(H_apply_buffer_type), pointer :: H_apply_buffer(:)
BEGIN_PROVIDER [ logical, H_apply_buffer_allocated ]
&BEGIN_PROVIDER [ integer(omp_lock_kind), H_apply_buffer_lock, (64,0:nproc-1) ]
use omp_lib
implicit none
BEGIN_DOC
! Buffer of determinants/coefficients/perturbative energy for H_apply.
! Uninitialized. Filled by H_apply subroutines.
END_DOC
integer :: iproc, sze
sze = 10000
if (.not.associated(H_apply_buffer)) then
allocate(H_apply_buffer(0:nproc-1))
iproc = 0
!$OMP PARALLEL PRIVATE(iproc) DEFAULT(NONE) &
!$OMP SHARED(H_apply_buffer,N_int,sze,N_states,H_apply_buffer_lock)
!$ iproc = omp_get_thread_num()
H_apply_buffer(iproc)%N_det = 0
H_apply_buffer(iproc)%sze = sze
allocate ( &
H_apply_buffer(iproc)%det(N_int,2,sze), &
H_apply_buffer(iproc)%coef(sze,N_states), &
H_apply_buffer(iproc)%e2(sze,N_states) &
)
H_apply_buffer(iproc)%det = 0_bit_kind
H_apply_buffer(iproc)%coef = 0.d0
H_apply_buffer(iproc)%e2 = 0.d0
call omp_init_lock(H_apply_buffer_lock(1,iproc))
!$OMP END PARALLEL
endif
do iproc=2,nproc-1
if (.not.associated(H_apply_buffer(iproc)%det)) then
print *, ' ===================== Error =================== '
print *, 'H_apply_buffer_allocated should be provided outside'
print *, 'of an OpenMP section'
print *, ' =============================================== '
stop
endif
enddo
END_PROVIDER
subroutine resize_H_apply_buffer(new_size,iproc)
implicit none
integer, intent(in) :: new_size, iproc
integer(bit_kind), pointer :: buffer_det(:,:,:)
double precision, pointer :: buffer_coef(:,:)
double precision, pointer :: buffer_e2(:,:)
integer :: i,j,k
integer :: Ndet
BEGIN_DOC
! Resizes the H_apply buffer of proc iproc. The buffer lock should
! be set before calling this function.
END_DOC
PROVIDE H_apply_buffer_allocated
ASSERT (new_size > 0)
ASSERT (iproc >= 0)
ASSERT (iproc < nproc)
allocate ( buffer_det(N_int,2,new_size), &
buffer_coef(new_size,N_states), &
buffer_e2(new_size,N_states) )
buffer_coef = 0.d0
buffer_e2 = 0.d0
do i=1,min(new_size,H_apply_buffer(iproc)%N_det)
do k=1,N_int
buffer_det(k,1,i) = H_apply_buffer(iproc)%det(k,1,i)
buffer_det(k,2,i) = H_apply_buffer(iproc)%det(k,2,i)
enddo
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i))) == elec_alpha_num)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num )
enddo
deallocate(H_apply_buffer(iproc)%det)
H_apply_buffer(iproc)%det => buffer_det
do k=1,N_states
do i=1,min(new_size,H_apply_buffer(iproc)%N_det)
buffer_coef(i,k) = H_apply_buffer(iproc)%coef(i,k)
enddo
enddo
deallocate(H_apply_buffer(iproc)%coef)
H_apply_buffer(iproc)%coef => buffer_coef
do k=1,N_states
do i=1,min(new_size,H_apply_buffer(iproc)%N_det)
buffer_e2(i,k) = H_apply_buffer(iproc)%e2(i,k)
enddo
enddo
deallocate(H_apply_buffer(iproc)%e2)
H_apply_buffer(iproc)%e2 => buffer_e2
H_apply_buffer(iproc)%sze = new_size
H_apply_buffer(iproc)%N_det = min(new_size,H_apply_buffer(iproc)%N_det)
end
subroutine copy_H_apply_buffer_to_wf
use omp_lib
implicit none
BEGIN_DOC
! Copies the H_apply buffer to psi_coef.
! After calling this subroutine, N_det, psi_det and psi_coef need to be touched
END_DOC
integer(bit_kind), allocatable :: buffer_det(:,:,:)
double precision, allocatable :: buffer_coef(:,:)
integer :: i,j,k
integer :: N_det_old
PROVIDE H_apply_buffer_allocated
2019-10-24 13:55:38 +02:00
2019-01-25 11:39:31 +01:00
ASSERT (N_int > 0)
ASSERT (N_det > 0)
allocate ( buffer_det(N_int,2,N_det), buffer_coef(N_det,N_states) )
2019-10-24 13:55:38 +02:00
! Backup determinants
j=0
2019-01-25 11:39:31 +01:00
do i=1,N_det
2019-10-24 13:55:38 +02:00
if (pruned(i)) cycle ! Pruned determinants
j+=1
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num)
buffer_det(:,:,j) = psi_det(:,:,i)
2019-01-25 11:39:31 +01:00
enddo
2019-10-24 13:55:38 +02:00
N_det_old = j
! Backup coefficients
2019-01-25 11:39:31 +01:00
do k=1,N_states
2019-10-24 13:55:38 +02:00
j=0
2019-01-25 11:39:31 +01:00
do i=1,N_det
2019-10-24 13:55:38 +02:00
if (pruned(i)) cycle ! Pruned determinants
j += 1
buffer_coef(j,k) = psi_coef(i,k)
2019-01-25 11:39:31 +01:00
enddo
2019-10-24 13:55:38 +02:00
ASSERT ( j == N_det_old )
2019-01-25 11:39:31 +01:00
enddo
2019-10-24 13:55:38 +02:00
! Update N_det
N_det = N_det_old
2019-01-25 11:39:31 +01:00
do j=0,nproc-1
N_det = N_det + H_apply_buffer(j)%N_det
enddo
2019-10-24 13:55:38 +02:00
! Update array sizes
2019-01-25 11:39:31 +01:00
if (psi_det_size < N_det) then
psi_det_size = N_det
TOUCH psi_det_size
endif
2019-10-24 13:55:38 +02:00
! Restore backup in resized array
2019-01-25 11:39:31 +01:00
do i=1,N_det_old
2019-10-24 13:55:38 +02:00
psi_det(:,:,i) = buffer_det(:,:,i)
2019-01-25 11:39:31 +01:00
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num )
enddo
do k=1,N_states
do i=1,N_det_old
psi_coef(i,k) = buffer_coef(i,k)
enddo
enddo
2019-10-24 13:55:38 +02:00
! Copy new buffers
2019-01-25 11:39:31 +01:00
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(j,k,i) FIRSTPRIVATE(N_det_old) &
!$OMP SHARED(N_int,H_apply_buffer,psi_det,psi_coef,N_states,psi_det_size)
j=0
!$ j=omp_get_thread_num()
do k=0,j-1
N_det_old += H_apply_buffer(k)%N_det
enddo
do i=1,H_apply_buffer(j)%N_det
do k=1,N_int
psi_det(k,1,i+N_det_old) = H_apply_buffer(j)%det(k,1,i)
psi_det(k,2,i+N_det_old) = H_apply_buffer(j)%det(k,2,i)
enddo
ASSERT (sum(popcnt(psi_det(:,1,i+N_det_old))) == elec_alpha_num)
ASSERT (sum(popcnt(psi_det(:,2,i+N_det_old))) == elec_beta_num )
enddo
do k=1,N_states
do i=1,H_apply_buffer(j)%N_det
psi_coef(i+N_det_old,k) = H_apply_buffer(j)%coef(i,k)
enddo
enddo
!$OMP BARRIER
H_apply_buffer(j)%N_det = 0
!$OMP END PARALLEL
SOFT_TOUCH N_det psi_det psi_coef
logical :: found_duplicates
call remove_duplicates_in_psi_det(found_duplicates)
do k=1,N_states
call normalize(psi_coef(1,k),N_det)
enddo
SOFT_TOUCH N_det psi_det psi_coef
end
subroutine remove_duplicates_in_psi_det(found_duplicates)
implicit none
logical, intent(out) :: found_duplicates
BEGIN_DOC
! Removes duplicate determinants in the wave function.
END_DOC
integer :: i,j,k
integer(bit_kind), allocatable :: bit_tmp(:)
logical,allocatable :: duplicate(:)
logical :: dup
allocate (duplicate(N_det), bit_tmp(N_det))
found_duplicates = .False.
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,dup)
!$OMP DO
do i=1,N_det
integer, external :: det_search_key
!$DIR FORCEINLINE
bit_tmp(i) = det_search_key(psi_det_sorted_bit(1,1,i),N_int)
duplicate(i) = .False.
enddo
!$OMP END DO
!$OMP DO schedule(dynamic,1024)
do i=1,N_det-1
if (duplicate(i)) then
cycle
endif
j = i+1
do while (bit_tmp(j)==bit_tmp(i))
if (duplicate(j)) then
j = j+1
if (j > N_det) then
exit
else
cycle
endif
endif
dup = .True.
do k=1,N_int
if ( (psi_det_sorted_bit(k,1,i) /= psi_det_sorted_bit(k,1,j) ) &
.or. (psi_det_sorted_bit(k,2,i) /= psi_det_sorted_bit(k,2,j) ) ) then
dup = .False.
exit
endif
enddo
if (dup) then
duplicate(j) = .True.
found_duplicates = .True.
endif
j += 1
if (j > N_det) then
exit
endif
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
if (found_duplicates) then
k=0
do i=1,N_det
if (.not.duplicate(i)) then
k += 1
psi_det(:,:,k) = psi_det_sorted_bit (:,:,i)
psi_coef(k,:) = psi_coef_sorted_bit(i,:)
else
if (sum(abs(psi_coef_sorted_bit(i,:))) /= 0.d0 ) then
psi_coef(k,:) = psi_coef_sorted_bit(i,:)
endif
endif
enddo
N_det = k
psi_det_sorted_bit(:,:,1:N_det) = psi_det(:,:,1:N_det)
psi_coef_sorted_bit(1:N_det,:) = psi_coef(1:N_det,:)
TOUCH N_det psi_det psi_coef psi_det_sorted_bit psi_coef_sorted_bit c0_weight
endif
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
SOFT_TOUCH psi_det psi_coef psi_det_sorted_bit psi_coef_sorted_bit
deallocate (duplicate,bit_tmp)
end
subroutine fill_H_apply_buffer_no_selection(n_selected,det_buffer,Nint,iproc)
use bitmasks
implicit none
BEGIN_DOC
! Fill the H_apply buffer with determiants for |CISD|
END_DOC
integer, intent(in) :: n_selected, Nint, iproc
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
integer :: i,j,k
integer :: new_size
PROVIDE H_apply_buffer_allocated
call omp_set_lock(H_apply_buffer_lock(1,iproc))
new_size = H_apply_buffer(iproc)%N_det + n_selected
if (new_size > H_apply_buffer(iproc)%sze) then
call resize_h_apply_buffer(max(2*H_apply_buffer(iproc)%sze,new_size),iproc)
endif
do i=1,H_apply_buffer(iproc)%N_det
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num)
enddo
do i=1,n_selected
do j=1,N_int
H_apply_buffer(iproc)%det(j,1,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,1,i)
H_apply_buffer(iproc)%det(j,2,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,2,i)
enddo
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i+H_apply_buffer(iproc)%N_det)) )== elec_alpha_num)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i+H_apply_buffer(iproc)%N_det))) == elec_beta_num)
enddo
do j=1,N_states
do i=1,N_selected
H_apply_buffer(iproc)%coef(i+H_apply_buffer(iproc)%N_det,j) = 0.d0
enddo
enddo
H_apply_buffer(iproc)%N_det = new_size
do i=1,H_apply_buffer(iproc)%N_det
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num)
enddo
call omp_unset_lock(H_apply_buffer_lock(1,iproc))
end
subroutine push_pt2(zmq_socket_push,pt2,norm_pert,H_pert_diag,i_generator,N_st,task_id)
use f77_zmq
implicit none
BEGIN_DOC
! Push |PT2| calculation to the collector
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
integer, intent(in) :: N_st, i_generator
double precision, intent(in) :: pt2(N_st), norm_pert(N_st), H_pert_diag(N_st)
integer, intent(in) :: task_id
integer :: rc
rc = f77_zmq_send( zmq_socket_push, 1, 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, 1, 4, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, pt2, 8*N_st, ZMQ_SNDMORE)
if (rc /= 8*N_st) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, pt2, 8*N_st, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, norm_pert, 8*N_st, ZMQ_SNDMORE)
if (rc /= 8*N_st) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, norm_pert, 8*N_st, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, H_pert_diag, 8*N_st, ZMQ_SNDMORE)
if (rc /= 8*N_st) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, H_pert_diag, 8*N_st, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, i_generator, 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, i_generator, 4, 0)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, task_id, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, task_id, 4, 0)'
stop 'error'
endif
! Activate if zmq_socket_push is a REQ
IRP_IF ZMQ_PUSH
IRP_ELSE
integer :: idummy
rc = f77_zmq_recv( zmq_socket_push, idummy, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, idummy, 4, 0)'
stop 'error'
endif
IRP_ENDIF
end
subroutine pull_pt2(zmq_socket_pull,pt2,norm_pert,H_pert_diag,i_generator,N_st,n,task_id)
use f77_zmq
implicit none
BEGIN_DOC
! Pull |PT2| calculation in the collector
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
integer, intent(in) :: N_st
double precision, intent(out) :: pt2(N_st), norm_pert(N_st), H_pert_diag(N_st)
integer, intent(out) :: task_id
integer, intent(out) :: n, i_generator
integer :: rc
n=0
rc = f77_zmq_recv( zmq_socket_pull, n, 4, 0)
if (rc == -1) then
n=9
return
endif
if (rc /= 4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, n, 4, 0)'
stop 'error'
endif
if (n > 0) then
rc = f77_zmq_recv( zmq_socket_pull, pt2(1), 8*N_st, 0)
if (rc /= 8*N_st) then
print *, ''
print *, ''
print *, ''
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, pt2(1) , 8*N_st, 0)'
print *, rc
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, norm_pert(1), 8*N_st, 0)
if (rc /= 8*N_st) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, norm_pert(1,1), 8*N_st)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, H_pert_diag(1), 8*N_st, 0)
if (rc /= 8*N_st) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, H_pert_diag(1,1), 8*N_st)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, i_generator, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, i_generator, 4, 0)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)'
stop 'error'
endif
endif
! Activate if zmq_socket_pull is a REP
IRP_IF ZMQ_PUSH
IRP_ELSE
rc = f77_zmq_send( zmq_socket_pull, 0, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_pull, 0, 4, 0)'
stop 'error'
endif
IRP_ENDIF
end