9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-05 01:48:34 +01:00
qp2/src/davidson/diagonalization_hcfg.irp.f

626 lines
19 KiB
Fortran
Raw Normal View History

subroutine davidson_diag_h_cfg(dets_in,u_in,dim_in,energies,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
use bitmasks
implicit none
BEGIN_DOC
! Davidson diagonalization.
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
END_DOC
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st_diag)
integer, intent(in) :: dressing_state
logical, intent(out) :: converged
double precision, allocatable :: H_jj(:)
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
integer :: i,k
ASSERT (N_st > 0)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
PROVIDE mo_two_e_integrals_in_map
allocate(H_jj(sze))
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(sze,H_jj, dets_in,Nint) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i=2,sze
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
enddo
!$OMP END DO
!$OMP END PARALLEL
if (dressing_state > 0) then
do k=1,N_st
do i=1,sze
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
enddo
enddo
endif
call davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
deallocate(H_jj)
end
subroutine davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag_in,Nint,dressing_state,converged)
use bitmasks
use mmap_module
implicit none
BEGIN_DOC
! Davidson diagonalization with specific diagonal elements of the H matrix
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
!
END_DOC
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag_in, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: H_jj(sze)
integer, intent(in) :: dressing_state
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
double precision, intent(out) :: energies(N_st_diag_in)
integer :: iter, N_st_diag
integer :: i,j,k,l,m,kk,ii,ll
logical, intent(inout) :: converged
double precision, external :: u_dot_v, u_dot_u
integer :: k_pairs, kl
integer :: iter2, itertot
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: s_tmp(:,:)
double precision :: diag_h_mat_elem
double precision, allocatable :: residual_norm(:)
character*(16384) :: write_buffer
double precision :: to_print(2,N_st)
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
double precision :: r1, r2, alpha
logical :: state_ok(N_st_diag_in*davidson_sze_max)
integer :: nproc_target
integer :: order(N_st_diag_in)
double precision :: cmax
double precision, allocatable :: U(:,:), U_csf(:,:), overlap(:,:)
double precision, allocatable :: tmpU(:,:), tmpW(:,:)
double precision, pointer :: W(:,:), W_csf(:,:)
logical :: disk_based
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
include 'constants.include.F'
N_st_diag = N_st_diag_in
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if (N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
itertot = 0
if (state_following) then
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
else
allocate(overlap(1,1)) ! avoid 'if' for deallocate
endif
overlap = 0.d0
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag) &! U
+ dble(sze_csf)*(N_st_diag*itermax) &! U_csf
+ dble(sze)*(N_st_diag) &! W
+ dble(sze_csf)*(N_st_diag*itermax) &! W_csf
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
+ 1.d0*(N_st_diag*itermax) &! lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_u_0_nstates_zmq
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(r1,irp_here)
nproc_target = 1
exit
endif
if (r1+rss < qp_max_mem) then
exit
endif
if (itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6,N_st,'Number of states')
call write_int(6,N_st_diag,'Number of states in diagonalization')
call write_int(6,sze,'Number of determinants')
call write_int(6,sze_csf,'Number of CSFs')
call write_int(6,nproc_target,'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if (disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
if (disk_based) then
! Create memory-mapped files for W and S
type(c_ptr) :: ptr_w, ptr_s
integer :: fd_s, fd_w
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
8, fd_w, .False., ptr_w)
call c_f_pointer(ptr_w, W_csf, (/sze_csf,N_st_diag*itermax/))
else
allocate(W(sze,N_st_diag),W_csf(sze_csf,N_st_diag*itermax))
endif
allocate( &
! Large
U(sze,N_st_diag), &
U_csf(sze_csf,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), &
lambda(N_st_diag*itermax))
h = 0.d0
U = 0.d0
y = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
! Davidson iterations
! ===================
converged = .False.
2022-06-14 21:42:08 +02:00
call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),U_csf(1,1))
do k=N_st+1,N_st_diag
2022-06-14 21:42:08 +02:00
do i=1,sze_csf
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
2022-06-14 21:42:08 +02:00
U_csf(i,k) = r1*dcos(r2) * u_csf(i,k-N_st)
enddo
2022-06-14 21:42:08 +02:00
U_csf(k,k) = u_csf(k,k) + 10.d0
enddo
do k=1,N_st_diag
2022-06-14 21:42:08 +02:00
call normalize(U_csf(1,k),sze_csf)
enddo
2022-06-14 21:42:08 +02:00
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,1),U(1,1))
do while (.not.converged)
itertot = itertot+1
if (itertot == 8) then
exit
endif
do iter=1,itermax-1
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
! if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
!call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift+1),U)
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
if ((sze > 100000).and.distributed_davidson) then
!call H_u_0_nstates_zmq (W,U,N_st_diag,sze)
allocate(tmpW(N_st_diag,sze_csf))
allocate(tmpU(N_st_diag,sze_csf))
do kk=1,N_st_diag
do ii=1,sze_csf
tmpU(kk,ii) = U_csf(ii,shift+kk)
enddo
enddo
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
do kk=1,N_st_diag
do ii=1,sze_csf
W_csf(ii,shift+kk)=tmpW(kk,ii)
enddo
enddo
deallocate(tmpW)
deallocate(tmpU)
else
!call H_u_0_nstates_openmp(W,U,N_st_diag,sze)
allocate(tmpW(N_st_diag,sze_csf))
allocate(tmpU(N_st_diag,sze_csf))
do kk=1,N_st_diag
do ii=1,sze_csf
tmpU(kk,ii) = U_csf(ii,shift+kk)
enddo
enddo
2022-06-18 17:31:44 +02:00
!tmpU(1,1)=1.0d0
2022-06-21 11:36:43 +02:00
double precision :: irp_rdtsc
double precision :: ticks_0, ticks_1
integer*8 :: irp_imax
irp_imax = 1
!ticks_0 = irp_rdtsc()
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
!ticks_1 = irp_rdtsc()
!print *,' ----Cycles:',(ticks_1-ticks_0)/dble(irp_imax)," ----"
!print *,' tmpW(1,1)=',tmpW(1,1)
!stop
do kk=1,N_st_diag
do ii=1,sze_csf
W_csf(ii,shift+kk)=tmpW(kk,ii)
enddo
enddo
2022-06-18 17:31:44 +02:00
!U_csf = 0.0d0
!U_csf(1,1) = 1.0d0
!u_in = 0.0d0
!call convertWFfromCSFtoDET(N_st_diag,tmpU,U2)
!call H_u_0_nstates_openmp(u_in,U2,N_st_diag,sze)
!call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),W_csf2(1,1))
!do i=1,sze_csf
2022-06-20 19:55:44 +02:00
! print *,"I=",i," qp=",W_csf2(i,1)," my=",W_csf(i,1)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
! if(dabs(dabs(W_csf2(i,1))-dabs(W_csf(i,1))) .gt. 1.0e-10)then
! print *,"somo=",psi_configuration(1,1,i)," domo=",psi_configuration(1,2,i)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
! endif
2022-06-18 17:31:44 +02:00
!end do
!stop
deallocate(tmpW)
deallocate(tmpU)
endif
! else
! ! Already computed in update below
! continue
! endif
if (dressing_state > 0) then
if (N_st == 1) then
l = dressed_column_idx(1)
double precision :: f
f = 1.0d0/psi_coef(l,1)
do istate=1,N_st_diag
do i=1,sze
W(i,istate) += dressing_column_h(i,1) *f * U(l,istate)
W(l,istate) += dressing_column_h(i,1) *f * U(i,istate)
enddo
enddo
else
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
psi_coef, size(psi_coef,1), &
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
dressing_column_h, size(dressing_column_h,1), s_tmp, size(s_tmp,1), &
1.d0, W(1,1), size(W,1))
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
dressing_column_h, size(dressing_column_h,1), &
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
1.d0, W(1,1), size(W,1))
endif
endif
!call convertWFfromDETtoCSF(N_st_diag,W,W_csf(1,shift+1))
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm('T','N', shift2, shift2, sze_csf, &
1.d0, U_csf, size(U_csf,1), W_csf, size(W_csf,1), &
0.d0, h, size(h,1))
call dgemm('T','N', shift2, shift2, sze_csf, &
1.d0, U_csf, size(U_csf,1), U_csf, size(U_csf,1), &
0.d0, s_tmp, size(s_tmp,1))
! Diagonalize h
! ---------------
integer :: lwork, info
double precision, allocatable :: work(:)
y = h
lwork = -1
allocate(work(1))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
lwork = int(work(1))
deallocate(work)
allocate(work(lwork))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
deallocate(work)
if (info /= 0) then
stop 'DSYGV Diagonalization failed'
endif
! Compute Energy for each eigenvector
! -----------------------------------
call dgemm('N','N',shift2,shift2,shift2, &
1.d0, h, size(h,1), y, size(y,1), &
0.d0, s_tmp, size(s_tmp,1))
call dgemm('T','N',shift2,shift2,shift2, &
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
0.d0, h, size(h,1))
do k=1,shift2
lambda(k) = h(k,k)
enddo
if (state_following) then
overlap = -1.d0
do i=1,shift2
do k=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,N_st
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,N_st_diag
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
enddo
endif
! Express eigenvectors of h in the csf basis
! ------------------------------------------
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
1.d0, U_csf, size(U_csf,1), y, size(y,1), 0.d0, U_csf(1,shift2+1), size(U_csf,1))
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift2+1),U)
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
1.d0, W_csf, size(W_csf,1), y, size(y,1), 0.d0, W_csf(1,shift2+1), size(W_csf,1))
call convertWFfromCSFtoDET(N_st_diag,W_csf(1,shift2+1),W)
! Compute residual vector and davidson step
! -----------------------------------------
!if (without_diagonal) then
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k=1,N_st_diag
do i=1,sze
U(i,k) = (lambda(k) * U(i,k) - W(i,k) ) &
/max(H_jj(i) - lambda (k),1.d-2)
enddo
enddo
!$OMP END PARALLEL DO
!else
! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
! do k=1,N_st_diag
! do i=1,sze
! U(i,k) = (lambda(k) * U(i,k) - W(i,k) )
! enddo
! enddo
! !$OMP END PARALLEL DO
!endif
do k=1,N_st
residual_norm(k) = u_dot_u(U(1,k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion
to_print(2,k) = residual_norm(k)
enddo
call convertWFfromDETtoCSF(N_st_diag,U,U_csf(1,shift2+1))
if ((itertot>1).and.(iter == 1)) then
!don't print
continue
else
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if (iter > 1) then
if (threshold_davidson_from_pt2) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
else
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
endif
endif
do k=1,N_st
if (residual_norm(k) > 1.d8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if (converged) then
exit
endif
logical, external :: qp_stop
if (qp_stop()) then
converged = .True.
exit
endif
enddo
! Re-contract U
! -------------
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
W_csf, size(W_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze_csf
W_csf(i,k) = u_in(i,k)
enddo
enddo
call convertWFfromCSFtoDET(N_st_diag,W_csf,W)
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
U_csf, size(U_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze_csf
U_csf(i,k) = u_in(i,k)
enddo
enddo
call convertWFfromCSFtoDET(N_st_diag,U_csf,U)
enddo
call nullify_small_elements(sze,N_st_diag,U,size(U,1),threshold_davidson_pt2)
do k=1,N_st_diag
do i=1,sze
u_in(i,k) = U(i,k)
enddo
enddo
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
write_buffer = '======'
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
if (disk_based)then
! Remove temp files
integer, external :: getUnitAndOpen
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
close(fd_w,status='delete')
else
deallocate(W, W_csf)
endif
deallocate ( &
residual_norm, &
U, U_csf, overlap, &
h, y, s_tmp, &
lambda &
)
FREE nthreads_davidson
end