9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-27 05:43:31 +01:00
qp2/docs/source/modules/dft_utils_one_e.rst

1188 lines
24 KiB
ReStructuredText
Raw Normal View History

Develop (#15) * fixed laplacian of aos * corrected the laplacians of aos * added dft_one_e * added new feature for new dft functionals * changed the configure to add new functionals * changed the configure * added dft_one_e/README.rst * added README.rst in new_functionals * added source/programmers_guide/new_ks.rst * Thesis Yann * Added gmp installation in configure * improved qp_e_conv_fci * Doc * Typos * Added variance_max * Fixed completion in qp_create * modif TODO * fixed DFT potential for n_states gt 1 * improved pot pbe * trying to improve sr PBE * fixed potential pbe * fixed the vxc smashed for pbe sr and normal * Comments in selection * bug fixed by peter * Fixed bug with zero beta electrons * Update README.rst * Update e_xc_new_func.irp.f * Update links.rst * Update quickstart.rst * Update quickstart.rst * updated cipsi * Fixed energies of non-expected s2 (#9) * Moved diag_algorithm in Davdison * Add print_ci_vector in tools (#11) * Fixed energies of non-expected s2 * Moved diag_algorithm in Davdison * Fixed travis * Added print_ci_vector * Documentation * Cleaned qp_set_mo_class.ml * Removed Core in taskserver * Merge develop-toto and manus (#12) * Fixed energies of non-expected s2 * Moved diag_algorithm in Davdison * Fixed travis * Added print_ci_vector * Documentation * Cleaned qp_set_mo_class.ml * Removed Core in taskserver * Frozen core for heavy atoms * Improved molden module * In sync with manus * Fixed some of the documentation errors * Develop toto (#13) * Fixed energies of non-expected s2 * Moved diag_algorithm in Davdison * Fixed travis * Added print_ci_vector * Documentation * Cleaned qp_set_mo_class.ml * Removed Core in taskserver * Frozen core for heavy atoms * Improved molden module * In sync with manus * Fixed some of the documentation errors * Develop manus (#14) * modified printing for rpt2 * Comment * Fixed plugins * Scripting for functionals * Documentation * Develop (#10) * fixed laplacian of aos * corrected the laplacians of aos * added dft_one_e * added new feature for new dft functionals * changed the configure to add new functionals * changed the configure * added dft_one_e/README.rst * added README.rst in new_functionals * added source/programmers_guide/new_ks.rst * Thesis Yann * Added gmp installation in configure * improved qp_e_conv_fci * Doc * Typos * Added variance_max * Fixed completion in qp_create * modif TODO * fixed DFT potential for n_states gt 1 * improved pot pbe * trying to improve sr PBE * fixed potential pbe * fixed the vxc smashed for pbe sr and normal * Comments in selection * bug fixed by peter * Fixed bug with zero beta electrons * Update README.rst * Update e_xc_new_func.irp.f * Update links.rst * Update quickstart.rst * Update quickstart.rst * updated cipsi * Fixed energies of non-expected s2 (#9) * Moved diag_algorithm in Davdison * some modifs * modified gfortran_debug.cfg * fixed automatization of functionals * modified e_xc_general.irp.f * minor modifs in ref_bitmask.irp.f * modifying functionals * rs_ks_scf and ks_scf compiles with the automatic handling of functionals * removed prints * fixed configure * fixed the new functionals * Merge toto * modified automatic functionals * Changed python into python2 * from_xyz suppressed * Cleaning repo * Update README.md * Update README.md * Contributors * Update GITHUB.md * bibtex
2019-03-07 16:29:06 +01:00
.. _module_dft_utils_one_e:
.. program:: dft_utils_one_e
.. default-role:: option
===============
dft_utils_one_e
===============
This module contains all the one-body related quantities needed to perform DFT or RS-DFT calculations with the LDA and PBE functionals.
Therefore, it contains most of the properties which depends on the one-body density and density matrix.
Some interesting quantities you might take a look at:
* The LDA and PBE *providers* for the x/c energies in :file:`e_xc.irp.f` and :file:`sr_exc.irp.f`
* The LDA and PBE *providers* for the x/c potentials on the AO basis in :file:`pot_ao.irp.f` and :file:`sr_pot_ao.irp.f`
* The :math:`h_{core}` energy computed directly with the one-body density matrix in :file:`one_e_energy_dft.irp.f`
* LDA and PBE short-range functionals *subroutines* in :file:`exc_sr_lda.irp.f` and :file:`exc_sr_pbe.irp.f`
Providers
---------
.. c:var:: ao_effective_one_e_potential
File : :file:`dft_utils_one_e/effective_pot.irp.f`
.. code:: fortran
double precision, allocatable :: ao_effective_one_e_potential (ao_num,ao_num,N_states)
double precision, allocatable :: ao_effective_one_e_potential_without_kin (ao_num,ao_num,N_states)
ao_effective_one_e_potential(i,j) = :math:`\rangle i_{AO}| v_{H}^{sr} |j_{AO}\rangle + \rangle i_{AO}| h_{core} |j_{AO}\rangle + \rangle i_{AO}|v_{xc} |j_{AO}\rangle`
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`effective_one_e_potential`
* :c:data:`mo_coef`
* :c:data:`mo_num`
* :c:data:`n_states`
.. c:var:: ao_effective_one_e_potential_without_kin
File : :file:`dft_utils_one_e/effective_pot.irp.f`
.. code:: fortran
double precision, allocatable :: ao_effective_one_e_potential (ao_num,ao_num,N_states)
double precision, allocatable :: ao_effective_one_e_potential_without_kin (ao_num,ao_num,N_states)
ao_effective_one_e_potential(i,j) = :math:`\rangle i_{AO}| v_{H}^{sr} |j_{AO}\rangle + \rangle i_{AO}| h_{core} |j_{AO}\rangle + \rangle i_{AO}|v_{xc} |j_{AO}\rangle`
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`effective_one_e_potential`
* :c:data:`mo_coef`
* :c:data:`mo_num`
* :c:data:`n_states`
.. c:var:: effective_one_e_potential
File : :file:`dft_utils_one_e/effective_pot.irp.f`
.. code:: fortran
double precision, allocatable :: effective_one_e_potential (mo_num,mo_num,N_states)
double precision, allocatable :: effective_one_e_potential_without_kin (mo_num,mo_num,N_states)
Effective_one_e_potential(i,j) = :math:`\rangle i_{MO}| v_{H}^{sr} |j_{MO}\rangle + \rangle i_{MO}| h_{core} |j_{MO}\rangle + \rangle i_{MO}|v_{xc} |j_{MO}\rangle`
on the |MO| basis
Taking the expectation value does not provide any energy, but
effective_one_e_potential(i,j) is the potential coupling DFT and WFT part to
be used in any WFT calculation.
Needs:
.. hlist::
:columns: 3
* :c:data:`mo_integrals_n_e`
* :c:data:`mo_kinetic_integrals`
* :c:data:`mo_num`
* :c:data:`n_states`
* :c:data:`potential_c_alpha_mo`
* :c:data:`potential_x_alpha_mo`
* :c:data:`short_range_hartree_operator`
Needed by:
.. hlist::
:columns: 3
* :c:data:`ao_effective_one_e_potential`
.. c:var:: effective_one_e_potential_without_kin
File : :file:`dft_utils_one_e/effective_pot.irp.f`
.. code:: fortran
double precision, allocatable :: effective_one_e_potential (mo_num,mo_num,N_states)
double precision, allocatable :: effective_one_e_potential_without_kin (mo_num,mo_num,N_states)
Effective_one_e_potential(i,j) = :math:`\rangle i_{MO}| v_{H}^{sr} |j_{MO}\rangle + \rangle i_{MO}| h_{core} |j_{MO}\rangle + \rangle i_{MO}|v_{xc} |j_{MO}\rangle`
on the |MO| basis
Taking the expectation value does not provide any energy, but
effective_one_e_potential(i,j) is the potential coupling DFT and WFT part to
be used in any WFT calculation.
Needs:
.. hlist::
:columns: 3
* :c:data:`mo_integrals_n_e`
* :c:data:`mo_kinetic_integrals`
* :c:data:`mo_num`
* :c:data:`n_states`
* :c:data:`potential_c_alpha_mo`
* :c:data:`potential_x_alpha_mo`
* :c:data:`short_range_hartree_operator`
Needed by:
.. hlist::
:columns: 3
* :c:data:`ao_effective_one_e_potential`
.. c:var:: energy_sr_c_lda
File : :file:`dft_utils_one_e/sr_exc.irp.f`
.. code:: fortran
double precision, allocatable :: energy_sr_x_lda (N_states)
double precision, allocatable :: energy_sr_c_lda (N_states)
exchange/correlation energy with the short range lda functional
Needs:
.. hlist::
:columns: 3
* :c:data:`final_grid_points`
* :c:data:`mu_erf_dft`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
* :c:data:`one_e_dm_alpha_at_r`
.. c:var:: energy_sr_c_pbe
File : :file:`dft_utils_one_e/sr_exc.irp.f`
.. code:: fortran
double precision, allocatable :: energy_sr_x_pbe (N_states)
double precision, allocatable :: energy_sr_c_pbe (N_states)
exchange/correlation energy with the short range pbe functional
Needs:
.. hlist::
:columns: 3
* :c:data:`final_grid_points`
* :c:data:`mu_erf_dft`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:var:: energy_sr_x_lda
File : :file:`dft_utils_one_e/sr_exc.irp.f`
.. code:: fortran
double precision, allocatable :: energy_sr_x_lda (N_states)
double precision, allocatable :: energy_sr_c_lda (N_states)
exchange/correlation energy with the short range lda functional
Needs:
.. hlist::
:columns: 3
* :c:data:`final_grid_points`
* :c:data:`mu_erf_dft`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
* :c:data:`one_e_dm_alpha_at_r`
.. c:var:: energy_sr_x_pbe
File : :file:`dft_utils_one_e/sr_exc.irp.f`
.. code:: fortran
double precision, allocatable :: energy_sr_x_pbe (N_states)
double precision, allocatable :: energy_sr_c_pbe (N_states)
exchange/correlation energy with the short range pbe functional
Needs:
.. hlist::
:columns: 3
* :c:data:`final_grid_points`
* :c:data:`mu_erf_dft`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:function:: gga_sr_type_functionals:
File : :file:`dft_utils_one_e/utils.irp.f`
.. code:: fortran
subroutine GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, &
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, &
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
routine that helps in building the x/c potentials on the AO basis for a GGA functional with a short-range interaction
Needs:
.. hlist::
:columns: 3
* :c:data:`mu_erf_dft`
* :c:data:`n_states`
Called by:
.. hlist::
:columns: 3
* :c:data:`aos_sr_vc_alpha_pbe_w`
* :c:data:`aos_sr_vxc_alpha_pbe_w`
* :c:data:`energy_sr_x_pbe`
* :c:data:`energy_x_sr_pbe`
Calls:
.. hlist::
:columns: 3
* :c:func:`ec_pbe_sr`
* :c:func:`ex_pbe_sr`
* :c:func:`grad_rho_ab_to_grad_rho_oc`
* :c:func:`rho_ab_to_rho_oc`
* :c:func:`v_grad_rho_oc_to_v_grad_rho_ab`
* :c:func:`v_rho_oc_to_v_rho_ab`
.. c:function:: gga_type_functionals:
File : :file:`dft_utils_one_e/utils.irp.f`
.. code:: fortran
subroutine GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, &
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, &
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
routine that helps in building the x/c potentials on the AO basis for a GGA functional
Needs:
.. hlist::
:columns: 3
* :c:data:`n_states`
Called by:
.. hlist::
:columns: 3
* :c:data:`aos_vc_alpha_pbe_w`
* :c:data:`aos_vxc_alpha_pbe_w`
* :c:data:`energy_c_pbe`
* :c:data:`energy_x_pbe`
Calls:
.. hlist::
:columns: 3
* :c:func:`ec_pbe_sr`
* :c:func:`ex_pbe_sr`
* :c:func:`grad_rho_ab_to_grad_rho_oc`
* :c:func:`rho_ab_to_rho_oc`
* :c:func:`v_grad_rho_oc_to_v_grad_rho_ab`
* :c:func:`v_rho_oc_to_v_rho_ab`
.. c:var:: mu_erf_dft
File : :file:`dft_utils_one_e/mu_erf_dft.irp.f`
.. code:: fortran
double precision :: mu_erf_dft
range separation parameter used in RS-DFT. It is set to mu_erf in order to be consistent with the two electrons integrals erf
Needs:
.. hlist::
:columns: 3
* :c:data:`mu_erf`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_sr_vc_alpha_lda_w`
* :c:data:`aos_sr_vc_alpha_pbe_w`
* :c:data:`aos_sr_vxc_alpha_lda_w`
* :c:data:`aos_sr_vxc_alpha_pbe_w`
* :c:data:`energy_c_sr_lda`
* :c:data:`energy_sr_x_lda`
* :c:data:`energy_sr_x_pbe`
* :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe`
.. c:var:: psi_dft_energy_h_core
File : :file:`dft_utils_one_e/one_e_energy_dft.irp.f`
.. code:: fortran
double precision, allocatable :: psi_dft_energy_kinetic (N_states)
double precision, allocatable :: psi_dft_energy_nuclear_elec (N_states)
double precision, allocatable :: psi_dft_energy_h_core (N_states)
kinetic, electron-nuclear and total h_core energy computed with the density matrix one_e_dm_mo_beta_for_dft+one_e_dm_mo_alpha_for_dft
Needs:
.. hlist::
:columns: 3
* :c:data:`elec_alpha_num`
* :c:data:`elec_beta_num`
* :c:data:`mo_integrals_n_e`
* :c:data:`mo_kinetic_integrals`
* :c:data:`mo_num`
* :c:data:`n_states`
* :c:data:`one_e_dm_mo_alpha_for_dft`
* :c:data:`one_e_dm_mo_beta_for_dft`
.. c:var:: psi_dft_energy_kinetic
File : :file:`dft_utils_one_e/one_e_energy_dft.irp.f`
.. code:: fortran
double precision, allocatable :: psi_dft_energy_kinetic (N_states)
double precision, allocatable :: psi_dft_energy_nuclear_elec (N_states)
double precision, allocatable :: psi_dft_energy_h_core (N_states)
kinetic, electron-nuclear and total h_core energy computed with the density matrix one_e_dm_mo_beta_for_dft+one_e_dm_mo_alpha_for_dft
Needs:
.. hlist::
:columns: 3
* :c:data:`elec_alpha_num`
* :c:data:`elec_beta_num`
* :c:data:`mo_integrals_n_e`
* :c:data:`mo_kinetic_integrals`
* :c:data:`mo_num`
* :c:data:`n_states`
* :c:data:`one_e_dm_mo_alpha_for_dft`
* :c:data:`one_e_dm_mo_beta_for_dft`
.. c:var:: psi_dft_energy_nuclear_elec
File : :file:`dft_utils_one_e/one_e_energy_dft.irp.f`
.. code:: fortran
double precision, allocatable :: psi_dft_energy_kinetic (N_states)
double precision, allocatable :: psi_dft_energy_nuclear_elec (N_states)
double precision, allocatable :: psi_dft_energy_h_core (N_states)
kinetic, electron-nuclear and total h_core energy computed with the density matrix one_e_dm_mo_beta_for_dft+one_e_dm_mo_alpha_for_dft
Needs:
.. hlist::
:columns: 3
* :c:data:`elec_alpha_num`
* :c:data:`elec_beta_num`
* :c:data:`mo_integrals_n_e`
* :c:data:`mo_kinetic_integrals`
* :c:data:`mo_num`
* :c:data:`n_states`
* :c:data:`one_e_dm_mo_alpha_for_dft`
* :c:data:`one_e_dm_mo_beta_for_dft`
.. c:var:: short_range_hartree
File : :file:`dft_utils_one_e/sr_coulomb.irp.f`
.. code:: fortran
double precision, allocatable :: short_range_hartree_operator (mo_num,mo_num,N_states)
double precision, allocatable :: short_range_hartree (N_states)
short_range_Hartree_operator(i,j) = :math:`\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}`
short_range_Hartree = :math:`1/2 \sum_{i,j} \rho_{ij} \mathtt{short_range_Hartree_operator}(i,j)`
= :math:`1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}`
Needs:
.. hlist::
:columns: 3
* :c:data:`mo_integrals_erf_map`
* :c:data:`mo_integrals_map`
* :c:data:`mo_num`
* :c:data:`mo_two_e_integrals_erf_in_map`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`n_states`
* :c:data:`one_e_dm_average_mo_for_dft`
* :c:data:`one_e_dm_mo_for_dft`
Needed by:
.. hlist::
:columns: 3
* :c:data:`effective_one_e_potential`
* :c:data:`trace_v_xc`
.. c:var:: short_range_hartree_operator
File : :file:`dft_utils_one_e/sr_coulomb.irp.f`
.. code:: fortran
double precision, allocatable :: short_range_hartree_operator (mo_num,mo_num,N_states)
double precision, allocatable :: short_range_hartree (N_states)
short_range_Hartree_operator(i,j) = :math:`\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}`
short_range_Hartree = :math:`1/2 \sum_{i,j} \rho_{ij} \mathtt{short_range_Hartree_operator}(i,j)`
= :math:`1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}`
Needs:
.. hlist::
:columns: 3
* :c:data:`mo_integrals_erf_map`
* :c:data:`mo_integrals_map`
* :c:data:`mo_num`
* :c:data:`mo_two_e_integrals_erf_in_map`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`n_states`
* :c:data:`one_e_dm_average_mo_for_dft`
* :c:data:`one_e_dm_mo_for_dft`
Needed by:
.. hlist::
:columns: 3
* :c:data:`effective_one_e_potential`
* :c:data:`trace_v_xc`
Subroutines / functions
-----------------------
.. c:function:: berf:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
function berf(a)
.. c:function:: dberfda:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
function dberfda(a)
.. c:function:: dpol:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
double precision function dpol(rs)
.. c:function:: dpold:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
double precision function dpold(rs)
.. c:function:: dpoldd:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
double precision function dpoldd(rs)
.. c:function:: ec_lda:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
subroutine ec_lda(rho_a,rho_b,ec,vc_a,vc_b)
Called by:
.. hlist::
:columns: 3
* :c:func:`ec_pbe_only`
* :c:func:`ec_pbe_sr`
* :c:data:`energy_c_lda`
Calls:
.. hlist::
:columns: 3
* :c:func:`ecpw`
.. c:function:: ec_lda_sr:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
subroutine ec_lda_sr(mu,rho_a,rho_b,ec,vc_a,vc_b)
Called by:
.. hlist::
:columns: 3
* :c:data:`aos_sr_vc_alpha_lda_w`
* :c:data:`aos_sr_vxc_alpha_lda_w`
* :c:data:`aos_vc_alpha_lda_w`
* :c:data:`aos_vxc_alpha_lda_w`
* :c:func:`ec_pbe_only`
* :c:func:`ec_pbe_sr`
* :c:data:`energy_c_sr_lda`
* :c:data:`energy_sr_x_lda`
Calls:
.. hlist::
:columns: 3
* :c:func:`ecorrlr`
* :c:func:`ecpw`
* :c:func:`vcorrlr`
.. c:function:: ec_only_lda_sr:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
subroutine ec_only_lda_sr(mu,rho_a,rho_b,ec)
Calls:
.. hlist::
:columns: 3
* :c:func:`ecorrlr`
* :c:func:`ecpw`
.. c:function:: ec_pbe_only:
File : :file:`dft_utils_one_e/exc_sr_pbe.irp.f`
.. code:: fortran
subroutine ec_pbe_only(mu,rhoc,rhoo,sigmacc,sigmaco,sigmaoo,ec)
Short-range pbe correlation energy functional for erf interaction
input : ==========
mu = range separated parameter
rhoc, rhoo = total density and spin density
sigmacc = square of the gradient of the total density
sigmaco = square of the gradient of the spin density
sigmaoo = scalar product between the gradient of the total density and the one of the spin density
output: ==========
ec = correlation energy
Calls:
.. hlist::
:columns: 3
* :c:func:`ec_lda`
* :c:func:`ec_lda_sr`
.. c:function:: ec_pbe_sr:
File : :file:`dft_utils_one_e/exc_sr_pbe.irp.f`
.. code:: fortran
subroutine ec_pbe_sr(mu,rhoc,rhoo,sigmacc,sigmaco,sigmaoo,ec,vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo)
Short-range pbe correlation energy functional for erf interaction
input : ==========
mu = range separated parameter
rhoc, rhoo = total density and spin density
sigmacc = square of the gradient of the total density
sigmaco = square of the gradient of the spin density
sigmaoo = scalar product between the gradient of the total density and the one of the spin density
output: ==========
ec = correlation energy
all variables v** are energy derivatives with respect to components of the density
vrhoc = derivative with respect to the total density
vrhoo = derivative with respect to spin density
vsigmacc = derivative with respect to the square of the gradient of the total density
vsigmaco = derivative with respect to scalar product between the gradients of total and spin densities
vsigmaoo = derivative with respect to the square of the gradient of the psin density
Called by:
.. hlist::
:columns: 3
* :c:func:`gga_sr_type_functionals`
* :c:func:`gga_type_functionals`
Calls:
.. hlist::
:columns: 3
* :c:func:`ec_lda`
* :c:func:`ec_lda_sr`
.. c:function:: ecorrlr:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
subroutine ecorrlr(rs,z,mu,eclr)
Called by:
.. hlist::
:columns: 3
* :c:func:`ec_lda_sr`
* :c:func:`ec_only_lda_sr`
Calls:
.. hlist::
:columns: 3
* :c:func:`ecpw`
.. c:function:: ecpw:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
subroutine ecPW(x,y,ec,ecd,ecz,ecdd,eczd)
Called by:
.. hlist::
:columns: 3
* :c:func:`ec_lda`
* :c:func:`ec_lda_sr`
* :c:func:`ec_only_lda_sr`
* :c:func:`ecorrlr`
* :c:func:`vcorrlr`
Calls:
.. hlist::
:columns: 3
* :c:func:`gpw`
.. c:function:: ex_lda:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
subroutine ex_lda(rho_a,rho_b,ex,vx_a,vx_b)
Called by:
.. hlist::
:columns: 3
* :c:data:`energy_x_lda`
.. c:function:: ex_lda_sr:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
subroutine ex_lda_sr(mu,rho_a,rho_b,ex,vx_a,vx_b)
Called by:
.. hlist::
:columns: 3
* :c:data:`aos_sr_vc_alpha_lda_w`
* :c:data:`aos_sr_vxc_alpha_lda_w`
* :c:data:`aos_vc_alpha_lda_w`
* :c:data:`aos_vxc_alpha_lda_w`
* :c:data:`energy_sr_x_lda`
* :c:data:`energy_x_sr_lda`
* :c:func:`ex_pbe_sr`
* :c:func:`ex_pbe_sr_only`
.. c:function:: ex_pbe_sr:
File : :file:`dft_utils_one_e/exc_sr_pbe.irp.f`
.. code:: fortran
subroutine ex_pbe_sr(mu,rho_a,rho_b,grd_rho_a_2,grd_rho_b_2,grd_rho_a_b,ex,vx_rho_a,vx_rho_b,vx_grd_rho_a_2,vx_grd_rho_b_2,vx_grd_rho_a_b)
mu = range separation parameter
rho_a = density alpha
rho_b = density beta
grd_rho_a_2 = (gradient rho_a)^2
grd_rho_b_2 = (gradient rho_b)^2
grd_rho_a_b = (gradient rho_a).(gradient rho_b)
ex = exchange energy density at the density and corresponding gradients of the density
vx_rho_a = d ex / d rho_a
vx_rho_b = d ex / d rho_b
vx_grd_rho_a_2 = d ex / d grd_rho_a_2
vx_grd_rho_b_2 = d ex / d grd_rho_b_2
vx_grd_rho_a_b = d ex / d grd_rho_a_b
Called by:
.. hlist::
:columns: 3
* :c:func:`gga_sr_type_functionals`
* :c:func:`gga_type_functionals`
Calls:
.. hlist::
:columns: 3
* :c:func:`ex_lda_sr`
.. c:function:: ex_pbe_sr_only:
File : :file:`dft_utils_one_e/exc_sr_pbe.irp.f`
.. code:: fortran
subroutine ex_pbe_sr_only(mu,rho_a,rho_b,grd_rho_a_2,grd_rho_b_2,grd_rho_a_b,ex)
rho_a = density alpha
rho_b = density beta
grd_rho_a_2 = (gradient rho_a)^2
grd_rho_b_2 = (gradient rho_b)^2
grd_rho_a_b = (gradient rho_a).(gradient rho_b)
ex = exchange energy density at point r
Calls:
.. hlist::
:columns: 3
* :c:func:`ex_lda_sr`
.. c:function:: g0d:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
double precision function g0d(rs)
.. c:function:: g0dd:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
double precision function g0dd(rs)
.. c:function:: g0f:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
double precision function g0f(x)
.. c:function:: gpw:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
subroutine GPW(x,Ac,alfa1,beta1,beta2,beta3,beta4,G,Gd,Gdd)
Called by:
.. hlist::
:columns: 3
* :c:func:`ecpw`
.. c:function:: grad_rho_ab_to_grad_rho_oc:
File : :file:`dft_utils_one_e/rho_ab_to_rho_tot.irp.f`
.. code:: fortran
subroutine grad_rho_ab_to_grad_rho_oc(grad_rho_a_2,grad_rho_b_2,grad_rho_a_b,grad_rho_o_2,grad_rho_c_2,grad_rho_o_c)
Called by:
.. hlist::
:columns: 3
* :c:func:`gga_sr_type_functionals`
* :c:func:`gga_type_functionals`
.. c:function:: qrpa:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
double precision function Qrpa(x)
.. c:function:: qrpad:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
double precision function Qrpad(x)
.. c:function:: qrpadd:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
double precision function Qrpadd(x)
.. c:function:: rho_ab_to_rho_oc:
File : :file:`dft_utils_one_e/rho_ab_to_rho_tot.irp.f`
.. code:: fortran
subroutine rho_ab_to_rho_oc(rho_a,rho_b,rho_o,rho_c)
Called by:
.. hlist::
:columns: 3
* :c:func:`gga_sr_type_functionals`
* :c:func:`gga_type_functionals`
.. c:function:: rho_oc_to_rho_ab:
File : :file:`dft_utils_one_e/rho_ab_to_rho_tot.irp.f`
.. code:: fortran
subroutine rho_oc_to_rho_ab(rho_o,rho_c,rho_a,rho_b)
.. c:function:: v_grad_rho_oc_to_v_grad_rho_ab:
File : :file:`dft_utils_one_e/rho_ab_to_rho_tot.irp.f`
.. code:: fortran
subroutine v_grad_rho_oc_to_v_grad_rho_ab(v_grad_rho_o_2,v_grad_rho_c_2,v_grad_rho_o_c,v_grad_rho_a_2,v_grad_rho_b_2,v_grad_rho_a_b)
Called by:
.. hlist::
:columns: 3
* :c:func:`gga_sr_type_functionals`
* :c:func:`gga_type_functionals`
.. c:function:: v_rho_ab_to_v_rho_oc:
File : :file:`dft_utils_one_e/rho_ab_to_rho_tot.irp.f`
.. code:: fortran
subroutine v_rho_ab_to_v_rho_oc(v_rho_a,v_rho_b,v_rho_o,v_rho_c)
.. c:function:: v_rho_oc_to_v_rho_ab:
File : :file:`dft_utils_one_e/rho_ab_to_rho_tot.irp.f`
.. code:: fortran
subroutine v_rho_oc_to_v_rho_ab(v_rho_o,v_rho_c,v_rho_a,v_rho_b)
Called by:
.. hlist::
:columns: 3
* :c:func:`gga_sr_type_functionals`
* :c:func:`gga_type_functionals`
.. c:function:: vcorrlr:
File : :file:`dft_utils_one_e/exc_sr_lda.irp.f`
.. code:: fortran
subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
Called by:
.. hlist::
:columns: 3
* :c:func:`ec_lda_sr`
Calls:
.. hlist::
:columns: 3
* :c:func:`ecpw`