mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-07 05:53:37 +01:00
1666 lines
54 KiB
Org Mode
1666 lines
54 KiB
Org Mode
|
* Newton's method to find the optimal lambda
|
||
|
|
||
|
*Compute the lambda value for the trust region*
|
||
|
|
||
|
This subroutine uses the Newton method in order to find the optimal
|
||
|
lambda. This constant is added on the diagonal of the hessian to shift
|
||
|
the eiganvalues. It has a double role:
|
||
|
- ensure that the resulting hessian is positive definite for the
|
||
|
Newton method
|
||
|
- constrain the step in the trust region, i.e.,
|
||
|
$||\textbf{x}(\lambda)|| \leq \Delta$, where $\Delta$ is the radius
|
||
|
of the trust region.
|
||
|
We search $\lambda$ which minimizes
|
||
|
\begin{align*}
|
||
|
f(\lambda) = (||\textbf{x}_{(k+1)}(\lambda)||^2 -\Delta^2)^2
|
||
|
\end{align*}
|
||
|
or
|
||
|
\begin{align*}
|
||
|
\tilde{f}(\lambda) = (\frac{1}{||\textbf{x}_{(k+1)}(\lambda)||^2}-\frac{1}{\Delta^2})^2
|
||
|
\end{align*}
|
||
|
and gives obviously 0 in both cases. \newline
|
||
|
|
||
|
There are several cases:
|
||
|
- If $\textbf{H}$ is positive definite the interval containing the
|
||
|
solution is $\lambda \in (0, \infty)$ (and $-h_1 < 0$).
|
||
|
- If $\textbf{H}$ is indefinite ($h_1 < 0$) and $\textbf{w}_1^T \cdot
|
||
|
\textbf{g} \neq 0$ then the interval containing
|
||
|
the solution is $\lambda \in (-h_1, \infty)$.
|
||
|
- If $\textbf{H}$ is indefinite ($h_1 < 0$) and $\textbf{w}_1^T \cdot
|
||
|
\textbf{g} = 0$ then the interval containing the solution is
|
||
|
$\lambda \in (-h_1, \infty)$. The terms where $|h_i - \lambda| <
|
||
|
10^{-12}$ are not computed, so the term where $i = 1$ is
|
||
|
automatically removed and this case becomes similar to the previous one.
|
||
|
|
||
|
So to avoid numerical problems (cf. trust_region) we start the
|
||
|
algorithm at $\lambda=\max(0 + \epsilon,-h_1 + \epsilon)$,
|
||
|
with $\epsilon$ a little constant.
|
||
|
The research must be restricted to the interval containing the
|
||
|
solution. For that reason a little trust region in 1D is used.
|
||
|
|
||
|
The Newton method to find the optimal $\lambda$ is :
|
||
|
\begin{align*}
|
||
|
\lambda_{(l+1)} &= \lambda_{(l)} - f^{''}(\lambda)_{(l)}^{-1} f^{'}(\lambda)_{(l)}^{} \\
|
||
|
\end{align*}
|
||
|
$f^{'}(\lambda)_{(l)}$: the first derivative of $f$ with respect to
|
||
|
$\lambda$ at the l-th iteration,
|
||
|
$f^{''}(\lambda)_{(l)}$: the second derivative of $f$ with respect to
|
||
|
$\lambda$ at the l-th iteration.\newline
|
||
|
|
||
|
Noting the Newton step $y = - f^{''}(\lambda)_{(l)}^{-1}
|
||
|
f^{'}(\lambda)_{(l)}^{}$ we constrain $y$ such as
|
||
|
\begin{align*}
|
||
|
y \leq \alpha
|
||
|
\end{align*}
|
||
|
with $\alpha$ a scalar representing the trust length (trust region in
|
||
|
1D) where the function $f$ or $\tilde{f}$ is correctly describe by the
|
||
|
Taylor series truncated at the second order. Thus, if $y > \alpha$,
|
||
|
the constraint is applied as
|
||
|
\begin{align*}
|
||
|
y^* = \alpha \frac{y}{|y|}
|
||
|
\end{align*}
|
||
|
with $y^*$ the solution in the trust region.
|
||
|
|
||
|
The size of the trust region evolves in function of $\rho$ as for the
|
||
|
trust region seen previously cf. trust_region, rho_model.
|
||
|
The prediction of the value of $f$ or $\tilde{f}$ is done using the
|
||
|
Taylor series truncated at the second order cf. "trust_region",
|
||
|
"trust_e_model".
|
||
|
|
||
|
The first and second derivatives of $f(\lambda) = (||\textbf{x}(\lambda)||^2 -
|
||
|
\Delta^2)^2$ with respect to $\lambda$ are:
|
||
|
\begin{align*}
|
||
|
\frac{\partial }{\partial \lambda} (||\textbf{x}(\lambda)||^2 - \Delta^2)^2
|
||
|
= 2 \left(\sum_{i=1}^n \frac{-2(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3} \right)
|
||
|
\left( - \Delta^2 + \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i+ \lambda)^2} \right)
|
||
|
\end{align*}
|
||
|
\begin{align*}
|
||
|
\frac{\partial^2}{\partial \lambda^2} (||\textbf{x}(\lambda)||^2 - \Delta^2)^2
|
||
|
= 2 \left[ \left( \sum_{i=1}^n 6 \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^4} \right) \left( - \Delta^2 + \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \right) + \left( \sum_{i=1}^n -2 \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3} \right)^2 \right]
|
||
|
\end{align*}
|
||
|
|
||
|
The first and second derivatives of $\tilde{f}(\lambda) = (1/||\textbf{x}(\lambda)||^2 -
|
||
|
1/\Delta^2)^2$ with respect to $\lambda$ are:
|
||
|
\begin{align*}
|
||
|
\frac{\partial}{\partial \lambda} (1/||\textbf{x}(\lambda)||^2 - 1/\Delta^2)^2
|
||
|
&= 4 \frac{\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3}}
|
||
|
{(\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3}
|
||
|
- \frac{4}{\Delta^2} \frac{\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3)}}
|
||
|
{(\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^2} \\
|
||
|
&= 4 \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3}
|
||
|
\left( \frac{1}{(\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3}
|
||
|
- \frac{1}{\Delta^2 (\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^2} \right)
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{\partial^2}{\partial \lambda^2} (1/||\textbf{x}(\lambda)||^2 - 1/\Delta^2)^2
|
||
|
&= 4 \left[ \frac{(\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3)})^2}
|
||
|
{(\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^4}
|
||
|
- 3 \frac{\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^4}}
|
||
|
{(\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3} \right] \\
|
||
|
&- \frac{4}{\Delta^2} \left[ \frac{(\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}
|
||
|
{(h_i + \lambda)^3)})^2}{(\sum_ {i=1}^n\frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3}
|
||
|
- 3 \frac{\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^4}}
|
||
|
{(\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^2} \right]
|
||
|
\end{align*}
|
||
|
|
||
|
Provided in qp_edit:
|
||
|
| thresh_rho_2 |
|
||
|
| thresh_cc |
|
||
|
| nb_it_max_lambda |
|
||
|
| version_lambda_search |
|
||
|
| nb_it_max_pre_search |
|
||
|
see qp_edit for more details
|
||
|
|
||
|
Input:
|
||
|
| n | integer | m*(m-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| tmp_wtg(n) | double precision | w_i^T.v_grad(i) |
|
||
|
| delta | double precision | delta for the trust region |
|
||
|
|
||
|
Output:
|
||
|
| lambda | double precision | Lagrange multiplier to constrain the norm of the size of the Newton step |
|
||
|
| | | lambda > 0 |
|
||
|
|
||
|
Internal:
|
||
|
| d1_N | double precision | value of d1_norm_trust_region |
|
||
|
| d2_N | double precision | value of d2_norm_trust_region |
|
||
|
| f_N | double precision | value of f_norm_trust_region |
|
||
|
| prev_f_N | double precision | previous value of f_norm_trust_region |
|
||
|
| f_R | double precision | (norm(x)^2 - delta^2)^2 or (1/norm(x)^2 - 1/delta^2)^2 |
|
||
|
| prev_f_R | double precision | previous value of f_R |
|
||
|
| model | double precision | predicted value of f_R from prev_f_R and y |
|
||
|
| d_1 | double precision | value of the first derivative |
|
||
|
| d_2 | double precision | value of the second derivative |
|
||
|
| y | double precision | Newton's step, y = -f''^-1 . f' = lambda - prev_lambda |
|
||
|
| prev_lambda | double precision | previous value of lambda |
|
||
|
| t1,t2,t3 | double precision | wall time |
|
||
|
| i | integer | index |
|
||
|
| epsilon | double precision | little constant to avoid numerical problem |
|
||
|
| rho_2 | double precision | (prev_f_R - f_R)/(prev_f_R - model), agreement between model and f_R |
|
||
|
| version | integer | version of the root finding method |
|
||
|
|
||
|
Function:
|
||
|
| d1_norm_trust_region | double precision | first derivative with respect to lambda of (norm(x)^2 - Delta^2)^2 |
|
||
|
| d2_norm_trust_region | double precision | first derivative with respect to lambda of (norm(x)^2 - Delta^2)^2 |
|
||
|
| d1_norm_inverse_trust_region | double precision | first derivative with respect to lambda of (1/norm(x)^2 - 1/Delta^2)^2 |
|
||
|
| d2_norm_inverse_trust_region | double precision | second derivative with respect to lambda of (1/norm(x)^2 - 1/Delta^2)^2 |
|
||
|
| f_norm_trust_region | double precision | value of norm(x)^2 |
|
||
|
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
subroutine trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
||
|
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Research the optimal lambda to constrain the step size in the trust region
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(inout) :: e_val(n)
|
||
|
double precision, intent(in) :: delta
|
||
|
double precision, intent(in) :: tmp_wtg(n)
|
||
|
|
||
|
! out
|
||
|
double precision, intent(out) :: lambda
|
||
|
|
||
|
! Internal
|
||
|
double precision :: d1_N, d2_N, f_N, prev_f_N
|
||
|
double precision :: prev_f_R, f_R
|
||
|
double precision :: model
|
||
|
double precision :: d_1, d_2
|
||
|
double precision :: t1,t2,t3
|
||
|
integer :: i
|
||
|
double precision :: epsilon
|
||
|
double precision :: y
|
||
|
double precision :: prev_lambda
|
||
|
double precision :: rho_2
|
||
|
double precision :: alpha
|
||
|
integer :: version
|
||
|
|
||
|
! Functions
|
||
|
double precision :: d1_norm_trust_region,d1_norm_trust_region_omp
|
||
|
double precision :: d2_norm_trust_region, d2_norm_trust_region_omp
|
||
|
double precision :: f_norm_trust_region, f_norm_trust_region_omp
|
||
|
double precision :: d1_norm_inverse_trust_region
|
||
|
double precision :: d2_norm_inverse_trust_region
|
||
|
double precision :: d1_norm_inverse_trust_region_omp
|
||
|
double precision :: d2_norm_inverse_trust_region_omp
|
||
|
|
||
|
print*,''
|
||
|
print*,'---Trust_newton---'
|
||
|
print*,''
|
||
|
|
||
|
call wall_time(t1)
|
||
|
|
||
|
! version_lambda_search
|
||
|
! 1 -> ||x||^2 - delta^2 = 0,
|
||
|
! 2 -> 1/||x||^2 - 1/delta^2 = 0 (better)
|
||
|
if (version_lambda_search == 1) then
|
||
|
print*, 'Research of the optimal lambda by solving ||x||^2 - delta^2 = 0'
|
||
|
else
|
||
|
print*, 'Research of the optimal lambda by solving 1/||x||^2 - 1/delta^2 = 0'
|
||
|
endif
|
||
|
! Version 2 is normally better
|
||
|
#+END_SRC
|
||
|
|
||
|
Resolution with the Newton method:
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
! Initialization
|
||
|
epsilon = 1d-4
|
||
|
lambda =MAX(0d0, -e_val(1))
|
||
|
|
||
|
! Pre research of lambda to start near the optimal lambda
|
||
|
! by adding a constant epsilon and changing the constant to
|
||
|
! have ||x(lambda + epsilon)|| ~ delta, before setting
|
||
|
! lambda = lambda + epsilon
|
||
|
print*, 'Pre research of lambda:'
|
||
|
print*,'Initial lambda =', lambda
|
||
|
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon)
|
||
|
print*,'||x(lambda)||=', dsqrt(f_N),'delta=',delta
|
||
|
i = 1
|
||
|
|
||
|
! To increase lambda
|
||
|
if (f_N > delta**2) then
|
||
|
print*,'Increasing lambda...'
|
||
|
do while (f_N > delta**2 .and. i <= nb_it_max_pre_search)
|
||
|
|
||
|
! Update the previous norm
|
||
|
prev_f_N = f_N
|
||
|
! New epsilon
|
||
|
epsilon = epsilon * 2d0
|
||
|
! New norm
|
||
|
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon)
|
||
|
|
||
|
print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta
|
||
|
|
||
|
! Security
|
||
|
if (prev_f_N < f_N) then
|
||
|
print*,'WARNING, error: prev_f_N < f_N, exit'
|
||
|
epsilon = epsilon * 0.5d0
|
||
|
i = nb_it_max_pre_search + 1
|
||
|
endif
|
||
|
|
||
|
i = i + 1
|
||
|
enddo
|
||
|
|
||
|
! To reduce lambda
|
||
|
else
|
||
|
print*,'Reducing lambda...'
|
||
|
do while (f_N < delta**2 .and. i <= nb_it_max_pre_search)
|
||
|
|
||
|
! Update the previous norm
|
||
|
prev_f_N = f_N
|
||
|
! New epsilon
|
||
|
epsilon = epsilon * 0.5d0
|
||
|
! New norm
|
||
|
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda + epsilon)
|
||
|
|
||
|
print*, 'lambda', lambda + epsilon, '||x||', dsqrt(f_N), 'delta', delta
|
||
|
|
||
|
! Security
|
||
|
if (prev_f_N > f_N) then
|
||
|
print*,'WARNING, error: prev_f_N > f_N, exit'
|
||
|
epsilon = epsilon * 2d0
|
||
|
i = nb_it_max_pre_search + 1
|
||
|
endif
|
||
|
|
||
|
i = i + 1
|
||
|
enddo
|
||
|
endif
|
||
|
|
||
|
print*,'End of the pre research of lambda'
|
||
|
|
||
|
! New value of lambda
|
||
|
lambda = lambda + epsilon
|
||
|
|
||
|
print*, 'e_val(1):', e_val(1)
|
||
|
print*, 'Staring point, lambda =', lambda
|
||
|
|
||
|
! thresh_cc, threshold for the research of the optimal lambda
|
||
|
! Leaves the loop when ABS(1d0-||x||^2/delta^2) > thresh_cc
|
||
|
! thresh_rho_2, threshold to cancel the step in the research
|
||
|
! of the optimal lambda, the step is cancelled if rho_2 < thresh_rho_2
|
||
|
print*,'Threshold for the CC:', thresh_cc
|
||
|
print*,'Threshold for rho_2:', thresh_rho_2
|
||
|
|
||
|
print*, 'w_1^T . g =', tmp_wtg(1)
|
||
|
|
||
|
! Debug
|
||
|
!if (debug) then
|
||
|
! print*, 'Iteration rho_2 lambda delta ||x|| |1-(||x||^2/delta^2)|'
|
||
|
!endif
|
||
|
|
||
|
! Initialization
|
||
|
i = 1
|
||
|
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda) ! Value of the ||x(lambda)||^2
|
||
|
model = 0d0 ! predicted value of (||x||^2 - delta^2)^2
|
||
|
prev_f_N = 0d0 ! previous value of ||x||^2
|
||
|
prev_f_R = 0d0 ! previous value of (||x||^2 - delta^2)^2
|
||
|
f_R = 0d0 ! value of (||x||^2 - delta^2)^2
|
||
|
rho_2 = 0d0 ! (prev_f_R - f_R)/(prev_f_R - m)
|
||
|
y = 0d0 ! step size
|
||
|
prev_lambda = 0d0 ! previous lambda
|
||
|
|
||
|
! Derivatives
|
||
|
if (version_lambda_search == 1) then
|
||
|
d_1 = d1_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! first derivative of (||x(lambda)||^2 - delta^2)^2
|
||
|
d_2 = d2_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! second derivative of (||x(lambda)||^2 - delta^2)^2
|
||
|
else
|
||
|
d_1 = d1_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! first derivative of (1/||x(lambda)||^2 - 1/delta^2)^2
|
||
|
d_2 = d2_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! second derivative of (1/||x(lambda)||^2 - 1/delta^2)^2
|
||
|
endif
|
||
|
|
||
|
! Trust length
|
||
|
alpha = DABS((1d0/d_2)*d_1)
|
||
|
|
||
|
! Newton's method
|
||
|
do while (i <= 100 .and. DABS(1d0-f_N/delta**2) > thresh_cc)
|
||
|
print*,'--------------------------------------'
|
||
|
print*,'Research of lambda, iteration:', i
|
||
|
print*,'--------------------------------------'
|
||
|
|
||
|
! Update of f_N, f_R and the derivatives
|
||
|
prev_f_N = f_N
|
||
|
if (version_lambda_search == 1) then
|
||
|
prev_f_R = (prev_f_N - delta**2)**2
|
||
|
d_1 = d1_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! first derivative of (||x(lambda)||^2 - delta^2)^2
|
||
|
d_2 = d2_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! second derivative of (||x(lambda)||^2 - delta^2)^2
|
||
|
else
|
||
|
prev_f_R = (1d0/prev_f_N - 1d0/delta**2)**2
|
||
|
d_1 = d1_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! first derivative of (1/||x(lambda)||^2 - 1/delta^2)^2
|
||
|
d_2 = d2_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta) ! second derivative of (1/||x(lambda)||^2 - 1/delta^2)^2
|
||
|
endif
|
||
|
write(*,'(a,E12.5,a,E12.5)') ' 1st and 2nd derivative: ', d_1,', ', d_2
|
||
|
|
||
|
! Newton's step
|
||
|
y = -(1d0/DABS(d_2))*d_1
|
||
|
|
||
|
! Constraint on y (the newton step)
|
||
|
if (DABS(y) > alpha) then
|
||
|
y = alpha * (y/DABS(y)) ! preservation of the sign of y
|
||
|
endif
|
||
|
write(*,'(a,E12.5)') ' Step length: ', y
|
||
|
|
||
|
! Predicted value of (||x(lambda)||^2 - delta^2)^2, Taylor series
|
||
|
model = prev_f_R + d_1 * y + 0.5d0 * d_2 * y**2
|
||
|
|
||
|
! Updates lambda
|
||
|
prev_lambda = lambda
|
||
|
lambda = prev_lambda + y
|
||
|
print*,'prev lambda:', prev_lambda
|
||
|
print*,'new lambda:', lambda
|
||
|
|
||
|
! Checks if lambda is in (-h_1, \infty)
|
||
|
if (lambda > MAX(0d0, -e_val(1))) then
|
||
|
! New value of ||x(lambda)||^2
|
||
|
f_N = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
|
||
|
|
||
|
! New f_R
|
||
|
if (version_lambda_search == 1) then
|
||
|
f_R = (f_N - delta**2)**2 ! new value of (||x(lambda)||^2 - delta^2)^2
|
||
|
else
|
||
|
f_R = (1d0/f_N - 1d0/delta**2)**2 ! new value of (1/||x(lambda)||^2 -1/delta^2)^2
|
||
|
endif
|
||
|
|
||
|
if (version_lambda_search == 1) then
|
||
|
print*,'Previous value of (||x(lambda)||^2 - delta^2)^2:', prev_f_R
|
||
|
print*,'Actual value of (||x(lambda)||^2 - delta^2)^2:', f_R
|
||
|
print*,'Predicted value of (||x(lambda)||^2 - delta^2)^2:', model
|
||
|
else
|
||
|
print*,'Previous value of (1/||x(lambda)||^2 - 1/delta^2)^2:', prev_f_R
|
||
|
print*,'Actual value of (1/||x(lambda)||^2 - 1/delta^2)^2:', f_R
|
||
|
print*,'Predicted value of (1/||x(lambda)||^2 - 1/delta^2)^2:', model
|
||
|
endif
|
||
|
|
||
|
print*,'previous - actual:', prev_f_R - f_R
|
||
|
print*,'previous - model:', prev_f_R - model
|
||
|
|
||
|
! Check the gain
|
||
|
if (DABS(prev_f_R - model) < thresh_model_2) then
|
||
|
print*,''
|
||
|
print*,'WARNING: ABS(previous - model) <', thresh_model_2, 'rho_2 will tend toward infinity'
|
||
|
print*,''
|
||
|
endif
|
||
|
|
||
|
! Will be deleted
|
||
|
!if (prev_f_R - f_R <= 1d-16 .or. prev_f_R - model <= 1d-16) then
|
||
|
! print*,''
|
||
|
! print*,'WARNING: ABS(previous - model) <= 1d-16, exit'
|
||
|
! print*,''
|
||
|
! exit
|
||
|
!endif
|
||
|
|
||
|
! Computes rho_2
|
||
|
rho_2 = (prev_f_R - f_R)/(prev_f_R - model)
|
||
|
print*,'rho_2:', rho_2
|
||
|
else
|
||
|
rho_2 = 0d0 ! in order to reduce the size of the trust region, alpha, until lambda is in (-h_1, \infty)
|
||
|
print*,'lambda < -e_val(1) ===> rho_2 = 0'
|
||
|
endif
|
||
|
|
||
|
! Evolution of the trust length, alpha
|
||
|
if (rho_2 >= 0.75d0) then
|
||
|
alpha = 2d0 * alpha
|
||
|
elseif (rho_2 >= 0.5d0) then
|
||
|
alpha = alpha
|
||
|
elseif (rho_2 >= 0.25d0) then
|
||
|
alpha = 0.5d0 * alpha
|
||
|
else
|
||
|
alpha = 0.25d0 * alpha
|
||
|
endif
|
||
|
write(*,'(a,E12.5)') ' New trust length alpha: ', alpha
|
||
|
|
||
|
! cancellaion of the step if rho < 0.1
|
||
|
if (rho_2 < thresh_rho_2) then !0.1d0) then
|
||
|
lambda = prev_lambda
|
||
|
f_N = prev_f_N
|
||
|
print*,'Rho_2 <', thresh_rho_2,', cancellation of the step: lambda = prev_lambda'
|
||
|
endif
|
||
|
|
||
|
print*,''
|
||
|
print*,'lambda, ||x||, delta:'
|
||
|
print*, lambda, dsqrt(f_N), delta
|
||
|
print*,'CC:', DABS(1d0 - f_N/delta**2)
|
||
|
print*,''
|
||
|
|
||
|
i = i + 1
|
||
|
enddo
|
||
|
|
||
|
! if trust newton failed
|
||
|
if (i > nb_it_max_lambda) then
|
||
|
print*,''
|
||
|
print*,'######################################################'
|
||
|
print*,'WARNING: i >', nb_it_max_lambda,'for the trust Newton'
|
||
|
print*,'The research of the optimal lambda has failed'
|
||
|
print*,'######################################################'
|
||
|
print*,''
|
||
|
endif
|
||
|
|
||
|
print*,'Number of iterations :', i
|
||
|
print*,'Value of lambda :', lambda
|
||
|
print*,'Error on the trust region (1d0-f_N/delta**2) (Convergence criterion) :', 1d0-f_N/delta**2
|
||
|
print*,'Error on the trust region (||x||^2 - delta^2)^2) :', (f_N - delta**2)**2
|
||
|
print*,'Error on the trust region (1/||x||^2 - 1/delta^2)^2)', (1d0/f_N - 1d0/delta**2)**2
|
||
|
|
||
|
! Time
|
||
|
call wall_time(t2)
|
||
|
t3 = t2 - t1
|
||
|
print*,'Time in trust_newton:', t3
|
||
|
|
||
|
print*,''
|
||
|
print*,'---End trust_newton---'
|
||
|
print*,''
|
||
|
|
||
|
end subroutine
|
||
|
#+END_SRC
|
||
|
|
||
|
* OMP: First derivative of (||x||^2 - Delta^2)^2
|
||
|
|
||
|
*Function to compute the first derivative of (||x||^2 - Delta^2)^2*
|
||
|
|
||
|
This function computes the first derivative of (||x||^2 - Delta^2)^2
|
||
|
with respect to lambda.
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{\partial }{\partial \lambda} (||\textbf{x}(\lambda)||^2 - \Delta^2)^2
|
||
|
= -4 \left(\sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3} \right)
|
||
|
\left( - \Delta^2 + \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i+ \lambda)^2} \right)
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{align*}
|
||
|
\text{accu1} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2} \\
|
||
|
\text{accu2} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3}
|
||
|
\end{align*}
|
||
|
|
||
|
Provided:
|
||
|
| mo_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
| delta | double precision | Delta of the trust region |
|
||
|
|
||
|
Internal:
|
||
|
| accu1 | double precision | first sum of the formula |
|
||
|
| accu2 | double precision | second sum of the formula |
|
||
|
| tmp_accu1 | double precision | temporary array for the first sum |
|
||
|
| tmp_accu2 | double precision | temporary array for the second sum |
|
||
|
| tmp_wtg(n) | double precision | temporary array for W^t.v_grad |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
Function:
|
||
|
| d1_norm_trust_region | double precision | first derivative with respect to lambda of (norm(x)^2 - Delta^2)^2 |
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function d1_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
|
||
|
|
||
|
use omp_lib
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: tmp_wtg(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
double precision, intent(in) :: delta
|
||
|
|
||
|
! Internal
|
||
|
double precision :: wtg,accu1,accu2
|
||
|
integer :: i,j
|
||
|
double precision, allocatable :: tmp_accu1(:), tmp_accu2(:)
|
||
|
|
||
|
! Functions
|
||
|
double precision :: d1_norm_trust_region_omp
|
||
|
|
||
|
! Allocation
|
||
|
allocate(tmp_accu1(n), tmp_accu2(n))
|
||
|
|
||
|
! OMP
|
||
|
call omp_set_max_active_levels(1)
|
||
|
|
||
|
! OMP
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP PRIVATE(i,j) &
|
||
|
!$OMP SHARED(n,lambda, e_val, thresh_eig,&
|
||
|
!$OMP tmp_accu1, tmp_accu2, tmp_wtg, accu1,accu2) &
|
||
|
!$OMP DEFAULT(NONE)
|
||
|
|
||
|
!$OMP MASTER
|
||
|
accu1 = 0d0
|
||
|
accu2 = 0d0
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu1(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu2(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (ABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_accu1(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**2
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu1 = accu1 + tmp_accu1(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (ABS(e_val(i)) > thresh_eig) then
|
||
|
tmp_accu2(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**3
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu2 = accu2 + tmp_accu2(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call omp_set_max_active_levels(4)
|
||
|
|
||
|
d1_norm_trust_region_omp = -4d0 * accu2 * (accu1 - delta**2)
|
||
|
|
||
|
deallocate(tmp_accu1, tmp_accu2)
|
||
|
|
||
|
end function
|
||
|
#+END_SRC
|
||
|
|
||
|
* OMP: Second derivative of (||x||^2 - Delta^2)^2
|
||
|
|
||
|
*Function to compute the second derivative of (||x||^2 - Delta^2)^2*
|
||
|
|
||
|
This function computes the second derivative of (||x||^2 - Delta^2)^2
|
||
|
with respect to lambda.
|
||
|
\begin{align*}
|
||
|
\frac{\partial^2 }{\partial \lambda^2} (||\textbf{x}(\lambda)||^2 - \Delta^2)^2
|
||
|
= 2 \left[ \left( \sum_{i=1}^n 6 \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^4} \right) \left( - \Delta^2 + \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \right) + \left( \sum_{i=1}^n -2 \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3} \right)^2 \right]
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{align*}
|
||
|
\text{accu1} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \\
|
||
|
\text{accu2} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3} \\
|
||
|
\text{accu3} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^4}
|
||
|
\end{align*}
|
||
|
|
||
|
Provided:
|
||
|
| m_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
| delta | double precision | Delta of the trust region |
|
||
|
|
||
|
Internal:
|
||
|
| accu1 | double precision | first sum of the formula |
|
||
|
| accu2 | double precision | second sum of the formula |
|
||
|
| accu3 | double precision | third sum of the formula |
|
||
|
| tmp_accu1 | double precision | temporary array for the first sum |
|
||
|
| tmp_accu2 | double precision | temporary array for the second sum |
|
||
|
| tmp_accu2 | double precision | temporary array for the third sum |
|
||
|
| tmp_wtg(n) | double precision | temporary array for W^t.v_grad |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
Function:
|
||
|
| d2_norm_trust_region | double precision | second derivative with respect to lambda of (norm(x)^2 - Delta^2)^2 |
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function d2_norm_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
|
||
|
|
||
|
use omp_lib
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: tmp_wtg(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
double precision, intent(in) :: delta
|
||
|
|
||
|
! Functions
|
||
|
double precision :: d2_norm_trust_region_omp
|
||
|
double precision :: ddot
|
||
|
|
||
|
! Internal
|
||
|
double precision :: accu1,accu2,accu3
|
||
|
double precision, allocatable :: tmp_accu1(:), tmp_accu2(:), tmp_accu3(:)
|
||
|
integer :: i, j
|
||
|
|
||
|
! Allocation
|
||
|
allocate(tmp_accu1(n), tmp_accu2(n), tmp_accu3(n))
|
||
|
|
||
|
call omp_set_max_active_levels(1)
|
||
|
|
||
|
! OMP
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP PRIVATE(i,j) &
|
||
|
!$OMP SHARED(n,lambda, e_val, thresh_eig,&
|
||
|
!$OMP tmp_accu1, tmp_accu2, tmp_accu3, tmp_wtg, &
|
||
|
!$OMP accu1, accu2, accu3) &
|
||
|
!$OMP DEFAULT(NONE)
|
||
|
|
||
|
! Initialization
|
||
|
|
||
|
!$OMP MASTER
|
||
|
accu1 = 0d0
|
||
|
accu2 = 0d0
|
||
|
accu3 = 0d0
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu1(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu2(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu3(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
! Calculations
|
||
|
|
||
|
! accu1
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (ABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_accu1(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**2
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu1 = accu1 + tmp_accu1(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
! accu2
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_accu2(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**3
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
! accu3
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu2 = accu2 + tmp_accu2(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_accu3(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**4
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu3 = accu3 + tmp_accu3(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
d2_norm_trust_region_omp = 2d0 * (6d0 * accu3 * (- delta**2 + accu1) + (-2d0 * accu2)**2)
|
||
|
|
||
|
deallocate(tmp_accu1, tmp_accu2, tmp_accu3)
|
||
|
|
||
|
end function
|
||
|
#+END_SRC
|
||
|
|
||
|
* OMP: Function value of ||x||^2
|
||
|
|
||
|
*Compute the value of ||x||^2*
|
||
|
|
||
|
This function computes the value of ||x(lambda)||^2
|
||
|
|
||
|
\begin{align*}
|
||
|
||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2}
|
||
|
\end{align*}
|
||
|
|
||
|
Provided:
|
||
|
| m_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
|
||
|
Internal:
|
||
|
| tmp_wtg(n) | double precision | temporary array for W^T.v_grad |
|
||
|
| tmp_fN | double precision | temporary array for the function |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
|
||
|
|
||
|
use omp_lib
|
||
|
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute ||x(lambda)||^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: tmp_wtg(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
|
||
|
! functions
|
||
|
double precision :: f_norm_trust_region_omp
|
||
|
|
||
|
! internal
|
||
|
double precision, allocatable :: tmp_fN(:)
|
||
|
integer :: i,j
|
||
|
|
||
|
! Allocation
|
||
|
allocate(tmp_fN(n))
|
||
|
|
||
|
call omp_set_max_active_levels(1)
|
||
|
|
||
|
! OMP
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP PRIVATE(i,j) &
|
||
|
!$OMP SHARED(n,lambda, e_val, thresh_eig,&
|
||
|
!$OMP tmp_fN, tmp_wtg, f_norm_trust_region_omp) &
|
||
|
!$OMP DEFAULT(NONE)
|
||
|
|
||
|
! Initialization
|
||
|
|
||
|
!$OMP MASTER
|
||
|
f_norm_trust_region_omp = 0d0
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_fN(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
! Calculations
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_fN(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**2
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
f_norm_trust_region_omp = f_norm_trust_region_omp + tmp_fN(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
deallocate(tmp_fN)
|
||
|
|
||
|
end function
|
||
|
#+END_SRC
|
||
|
|
||
|
* First derivative of (||x||^2 - Delta^2)^2
|
||
|
Version without omp
|
||
|
|
||
|
*Function to compute the first derivative of ||x||^2 - Delta*
|
||
|
|
||
|
This function computes the first derivative of (||x||^2 - Delta^2)^2
|
||
|
with respect to lambda.
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{\partial }{\partial \lambda} (||\textbf{x}(\lambda)||^2 - \Delta^2)^2
|
||
|
= 2 \left(-2\sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3} \right)
|
||
|
\left( - \Delta^2 + \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i+ \lambda)^2} \right)
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{align*}
|
||
|
\text{accu1} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \\
|
||
|
\text{accu2} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3}
|
||
|
\end{align*}
|
||
|
|
||
|
Provided:
|
||
|
| m_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
| delta | double precision | Delta of the trust region |
|
||
|
|
||
|
Internal:
|
||
|
| accu1 | double precision | first sum of the formula |
|
||
|
| accu2 | double precision | second sum of the formula |
|
||
|
| wtg | double precision | temporary variable to store W^T.v_grad |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
Function:
|
||
|
| d1_norm_trust_region | double precision | first derivative with respect to lambda of (norm(x)^2 - Delta^2)^2 |
|
||
|
| ddot | double precision | blas dot product |
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function d1_norm_trust_region(n,e_val,w,v_grad,lambda,delta)
|
||
|
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute the first derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: w(n,n)
|
||
|
double precision, intent(in) :: v_grad(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
double precision, intent(in) :: delta
|
||
|
|
||
|
! Internal
|
||
|
double precision :: wtg, accu1, accu2
|
||
|
integer :: i, j
|
||
|
|
||
|
! Functions
|
||
|
double precision :: d1_norm_trust_region
|
||
|
double precision :: ddot
|
||
|
|
||
|
! Initialization
|
||
|
accu1 = 0d0
|
||
|
accu2 = 0d0
|
||
|
|
||
|
do i = 1, n
|
||
|
wtg = 0d0
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
!wtg = ddot(n,w(:,i),1,v_grad,1)
|
||
|
accu1 = accu1 + wtg**2 / (e_val(i) + lambda)**2
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
do i = 1, n
|
||
|
wtg = 0d0
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
!wtg = ddot(n,w(:,i),1,v_grad,1)
|
||
|
accu2 = accu2 - 2d0 * wtg**2 / (e_val(i) + lambda)**3
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
d1_norm_trust_region = 2d0 * accu2 * (accu1 - delta**2)
|
||
|
|
||
|
end function
|
||
|
#+END_SRC
|
||
|
|
||
|
* Second derivative of (||x||^2 - Delta^2)^2
|
||
|
Version without OMP
|
||
|
|
||
|
*Function to compute the second derivative of ||x||^2 - Delta*
|
||
|
|
||
|
|
||
|
\begin{equation}
|
||
|
\frac{\partial^2 }{\partial \lambda^2} (||\textbf{x}(\lambda)||^2 - \Delta^2)^2
|
||
|
= 2 \left[ \left( \sum_{i=1}^n 6 \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^4} \right) \left( - \Delta^2 + \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \right) + \left( \sum_{i=1}^n -2 \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3} \right)^2 \right]
|
||
|
\end{equation}
|
||
|
|
||
|
\begin{align*}
|
||
|
\text{accu1} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \\
|
||
|
\text{accu2} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3} \\
|
||
|
\text{accu3} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^4}
|
||
|
\end{align*}
|
||
|
Provided:
|
||
|
| m_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
| delta | double precision | Delta of the trust region |
|
||
|
|
||
|
Internal:
|
||
|
| accu1 | double precision | first sum of the formula |
|
||
|
| accu2 | double precision | second sum of the formula |
|
||
|
| accu3 | double precision | third sum of the formula |
|
||
|
| wtg | double precision | temporary variable to store W^T.v_grad |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
Function:
|
||
|
| d2_norm_trust_region | double precision | second derivative with respect to lambda of norm(x)^2 - Delta^2 |
|
||
|
| ddot | double precision | blas dot product |
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function d2_norm_trust_region(n,e_val,w,v_grad,lambda,delta)
|
||
|
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute the second derivative with respect to lambda of (||x(lambda)||^2 - Delta^2)^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: w(n,n)
|
||
|
double precision, intent(in) :: v_grad(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
double precision, intent(in) :: delta
|
||
|
|
||
|
! Functions
|
||
|
double precision :: d2_norm_trust_region
|
||
|
double precision :: ddot
|
||
|
|
||
|
! Internal
|
||
|
double precision :: wtg,accu1,accu2,accu3
|
||
|
integer :: i, j
|
||
|
|
||
|
! Initialization
|
||
|
accu1 = 0d0
|
||
|
accu2 = 0d0
|
||
|
accu3 = 0d0
|
||
|
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
wtg = 0d0
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
!wtg = ddot(n,w(:,i),1,v_grad,1)
|
||
|
accu1 = accu1 + wtg**2 / (e_val(i) + lambda)**2 !4
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
wtg = 0d0
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
!wtg = ddot(n,w(:,i),1,v_grad,1)
|
||
|
accu2 = accu2 - 2d0 * wtg**2 / (e_val(i) + lambda)**3 !2
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
wtg = 0d0
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
!wtg = ddot(n,w(:,i),1,v_grad,1)
|
||
|
accu3 = accu3 + 6d0 * wtg**2 / (e_val(i) + lambda)**4 !3
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
d2_norm_trust_region = 2d0 * (accu3 * (- delta**2 + accu1) + accu2**2)
|
||
|
|
||
|
end function
|
||
|
#+END_SRC
|
||
|
|
||
|
* Function value of ||x||^2
|
||
|
Version without OMP
|
||
|
|
||
|
*Compute the value of ||x||^2*
|
||
|
|
||
|
This function computes the value of ||x(lambda)||^2
|
||
|
|
||
|
\begin{align*}
|
||
|
||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2}
|
||
|
\end{align*}
|
||
|
|
||
|
Provided:
|
||
|
| m_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
| delta | double precision | Delta of the trust region |
|
||
|
|
||
|
Internal:
|
||
|
| wtg | double precision | temporary variable to store W^T.v_grad |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
Function:
|
||
|
| f_norm_trust_region | double precision | value of norm(x)^2 |
|
||
|
| ddot | double precision | blas dot product |
|
||
|
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function f_norm_trust_region(n,e_val,tmp_wtg,lambda)
|
||
|
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute ||x(lambda)||^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: tmp_wtg(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
|
||
|
! function
|
||
|
double precision :: f_norm_trust_region
|
||
|
double precision :: ddot
|
||
|
|
||
|
! internal
|
||
|
integer :: i,j
|
||
|
|
||
|
! Initialization
|
||
|
f_norm_trust_region = 0d0
|
||
|
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
f_norm_trust_region = f_norm_trust_region + tmp_wtg(i)**2 / (e_val(i) + lambda)**2
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
end function
|
||
|
#+END_SRC
|
||
|
|
||
|
* OMP: First derivative of (1/||x||^2 - 1/Delta^2)^2
|
||
|
Version with OMP
|
||
|
|
||
|
*Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2*
|
||
|
|
||
|
This function computes the value of (1/||x(lambda)||^2 - 1/Delta^2)^2
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{\partial}{\partial \lambda} (1/||\textbf{x}(\lambda)||^2 - 1/\Delta^2)^2
|
||
|
&= 4 \frac{\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3}}
|
||
|
{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3}
|
||
|
- \frac{4}{\Delta^2} \frac{\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3)}}
|
||
|
{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^2} \\
|
||
|
&= 4 \sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3}
|
||
|
\left( \frac{1}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3}
|
||
|
- \frac{1}{\Delta^2 (\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^2} \right)
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{align*}
|
||
|
\text{accu1} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \\
|
||
|
\text{accu2} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3}
|
||
|
\end{align*}
|
||
|
|
||
|
Provided:
|
||
|
| m_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
| delta | double precision | Delta of the trust region |
|
||
|
|
||
|
Internal:
|
||
|
| wtg | double precision | temporary variable to store W^T.v_grad |
|
||
|
| tmp_accu1 | double precision | temporary array for the first sum |
|
||
|
| tmp_accu2 | double precision | temporary array for the second sum |
|
||
|
| tmp_wtg(n) | double precision | temporary array for W^t.v_grad |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
Function:
|
||
|
| d1_norm_inverse_trust_region | double precision | value of the first derivative |
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function d1_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
|
||
|
|
||
|
use omp_lib
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: tmp_wtg(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
double precision, intent(in) :: delta
|
||
|
|
||
|
! Internal
|
||
|
double precision :: accu1, accu2
|
||
|
integer :: i,j
|
||
|
double precision, allocatable :: tmp_accu1(:), tmp_accu2(:)
|
||
|
|
||
|
! Functions
|
||
|
double precision :: d1_norm_inverse_trust_region_omp
|
||
|
|
||
|
! Allocation
|
||
|
allocate(tmp_accu1(n), tmp_accu2(n))
|
||
|
|
||
|
! OMP
|
||
|
call omp_set_max_active_levels(1)
|
||
|
|
||
|
! OMP
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP PRIVATE(i,j) &
|
||
|
!$OMP SHARED(n,lambda, e_val, thresh_eig,&
|
||
|
!$OMP tmp_accu1, tmp_accu2, tmp_wtg, accu1, accu2) &
|
||
|
!$OMP DEFAULT(NONE)
|
||
|
|
||
|
!$OMP MASTER
|
||
|
accu1 = 0d0
|
||
|
accu2 = 0d0
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu1(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu2(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
! !$OMP MASTER
|
||
|
! do i = 1, n
|
||
|
! if (ABS(e_val(i)+lambda) > 1d-12) then
|
||
|
! tmp_accu1(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**2
|
||
|
! endif
|
||
|
! enddo
|
||
|
! !$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_accu1(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**2
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu1 = accu1 + tmp_accu1(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
! !$OMP MASTER
|
||
|
! do i = 1, n
|
||
|
! if (ABS(e_val(i)+lambda) > 1d-12) then
|
||
|
! tmp_accu2(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**3
|
||
|
! endif
|
||
|
! enddo
|
||
|
! !$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_accu2(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**3
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu2 = accu2 + tmp_accu2(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call omp_set_max_active_levels(4)
|
||
|
|
||
|
d1_norm_inverse_trust_region_omp = 4d0 * accu2 * (1d0/accu1**3 - 1d0/(delta**2 * accu1**2))
|
||
|
|
||
|
deallocate(tmp_accu1, tmp_accu2)
|
||
|
|
||
|
end
|
||
|
#+END_SRC
|
||
|
|
||
|
* OMP: Second derivative of (1/||x||^2 - 1/Delta^2)^2
|
||
|
Version with OMP
|
||
|
|
||
|
*Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2*
|
||
|
|
||
|
This function computes the value of (1/||x(lambda)||^2 - 1/Delta^2)^2
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{\partial^2}{\partial \lambda^2} (1/||\textbf{x}(\lambda)||^2 - 1/\Delta^2)^2
|
||
|
&= 4 \left[ \frac{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3)})^2}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^4}
|
||
|
- 3 \frac{\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^4}}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3} \right] \\
|
||
|
&- \frac{4}{\Delta^2} \left[ \frac{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3)})^2}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3}
|
||
|
- 3 \frac{\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^4}}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^2} \right]
|
||
|
\end{align*}
|
||
|
|
||
|
|
||
|
\begin{align*}
|
||
|
\text{accu1} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \\
|
||
|
\text{accu2} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3} \\
|
||
|
\text{accu3} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^4}
|
||
|
\end{align*}
|
||
|
|
||
|
Provided:
|
||
|
| m_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
| delta | double precision | Delta of the trust region |
|
||
|
|
||
|
Internal:
|
||
|
| wtg | double precision | temporary variable to store W^T.v_grad |
|
||
|
| tmp_accu1 | double precision | temporary array for the first sum |
|
||
|
| tmp_accu2 | double precision | temporary array for the second sum |
|
||
|
| tmp_wtg(n) | double precision | temporary array for W^t.v_grad |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
Function:
|
||
|
| d1_norm_inverse_trust_region | double precision | value of the first derivative |
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function d2_norm_inverse_trust_region_omp(n,e_val,tmp_wtg,lambda,delta)
|
||
|
|
||
|
use omp_lib
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: tmp_wtg(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
double precision, intent(in) :: delta
|
||
|
|
||
|
! Internal
|
||
|
double precision :: accu1, accu2, accu3
|
||
|
integer :: i,j
|
||
|
double precision, allocatable :: tmp_accu1(:), tmp_accu2(:), tmp_accu3(:)
|
||
|
|
||
|
! Functions
|
||
|
double precision :: d2_norm_inverse_trust_region_omp
|
||
|
|
||
|
! Allocation
|
||
|
allocate(tmp_accu1(n), tmp_accu2(n), tmp_accu3(n))
|
||
|
|
||
|
! OMP
|
||
|
call omp_set_max_active_levels(1)
|
||
|
|
||
|
! OMP
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP PRIVATE(i,j) &
|
||
|
!$OMP SHARED(n,lambda, e_val, thresh_eig,&
|
||
|
!$OMP tmp_accu1, tmp_accu2, tmp_accu3, tmp_wtg, &
|
||
|
!$OMP accu1, accu2, accu3) &
|
||
|
!$OMP DEFAULT(NONE)
|
||
|
|
||
|
!$OMP MASTER
|
||
|
accu1 = 0d0
|
||
|
accu2 = 0d0
|
||
|
accu3 = 0d0
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu1(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu2(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
tmp_accu3(i) = 0d0
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_accu1(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**2
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu1 = accu1 + tmp_accu1(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_accu2(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**3
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu2 = accu2 + tmp_accu2(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP DO
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
tmp_accu3(i) = tmp_wtg(i)**2 / (e_val(i) + lambda)**4
|
||
|
endif
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
|
||
|
!$OMP MASTER
|
||
|
do i = 1, n
|
||
|
accu3 = accu3 + tmp_accu3(i)
|
||
|
enddo
|
||
|
!$OMP END MASTER
|
||
|
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call omp_set_max_active_levels(4)
|
||
|
|
||
|
d2_norm_inverse_trust_region_omp = 4d0 * (6d0 * accu2**2/accu1**4 - 3d0 * accu3/accu1**3) &
|
||
|
- 4d0/delta**2 * (4d0 * accu2**2/accu1**3 - 3d0 * accu3/accu1**2)
|
||
|
|
||
|
deallocate(tmp_accu1,tmp_accu2,tmp_accu3)
|
||
|
|
||
|
end
|
||
|
#+END_SRC
|
||
|
|
||
|
* First derivative of (1/||x||^2 - 1/Delta^2)^2
|
||
|
Version without OMP
|
||
|
|
||
|
*Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2*
|
||
|
|
||
|
This function computes the value of (1/||x(lambda)||^2 - 1/Delta^2)^2
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{\partial}{\partial \lambda} (1/||\textbf{x}(\lambda)||^2 - 1/\Delta^2)^2
|
||
|
&= 4 \frac{\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3}}
|
||
|
{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3}
|
||
|
- \frac{4}{\Delta^2} \frac{\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3)}}
|
||
|
{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^2} \\
|
||
|
&= 4 \sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3}
|
||
|
\left( \frac{1}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3}
|
||
|
- \frac{1}{\Delta^2 (\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^2} \right)
|
||
|
\end{align*}
|
||
|
\begin{align*}
|
||
|
\text{accu1} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \\
|
||
|
\text{accu2} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3}
|
||
|
\end{align*}
|
||
|
Provided:
|
||
|
| m_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
| delta | double precision | Delta of the trust region |
|
||
|
|
||
|
Internal:
|
||
|
| wtg | double precision | temporary variable to store W^T.v_grad |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
Function:
|
||
|
| d1_norm_inverse_trust_region | double precision | value of the first derivative |
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function d1_norm_inverse_trust_region(n,e_val,w,v_grad,lambda,delta)
|
||
|
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute the first derivative of (1/||x||^2 - 1/Delta^2)^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: w(n,n)
|
||
|
double precision, intent(in) :: v_grad(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
double precision, intent(in) :: delta
|
||
|
|
||
|
! Internal
|
||
|
double precision :: wtg, accu1, accu2
|
||
|
integer :: i,j
|
||
|
|
||
|
! Functions
|
||
|
double precision :: d1_norm_inverse_trust_region
|
||
|
|
||
|
accu1 = 0d0
|
||
|
accu2 = 0d0
|
||
|
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
wtg = 0d0
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
accu1 = accu1 + wtg**2 / (e_val(i) + lambda)**2
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
wtg = 0d0
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
accu2 = accu2 + wtg**2 / (e_val(i) + lambda)**3
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
d1_norm_inverse_trust_region = 4d0 * accu2 * (1d0/accu1**3 - 1d0/(delta**2 * accu1**2))
|
||
|
|
||
|
end
|
||
|
#+END_SRC
|
||
|
|
||
|
* Second derivative of (1/||x||^2 - 1/Delta^2)^2
|
||
|
Version without OMP
|
||
|
|
||
|
*Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2*
|
||
|
|
||
|
This function computes the value of (1/||x(lambda)||^2 - 1/Delta^2)^2
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{\partial^2}{\partial \lambda^2} (1/||\textbf{x}(\lambda)||^2 - 1/\Delta^2)^2
|
||
|
&= 4 \left[ \frac{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3)})^2}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^4}
|
||
|
- 3 \frac{\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^4}}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3} \right] \\
|
||
|
&- \frac{4}{\Delta^2} \left[ \frac{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^3)})^2}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^3}
|
||
|
- 3 \frac{\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^4}}{(\sum_i \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2})^2} \right]
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{align*}
|
||
|
\text{accu1} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^2} \\
|
||
|
\text{accu2} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^3} \\
|
||
|
\text{accu3} &= \sum_{i=1}^n \frac{(\textbf{w}_i^T \textbf{g})^2}{(h_i + \lambda)^4}
|
||
|
\end{align*}
|
||
|
|
||
|
Provided:
|
||
|
| m_num | integer | number of MOs |
|
||
|
|
||
|
Input:
|
||
|
| n | integer | mo_num*(mo_num-1)/2 |
|
||
|
| e_val(n) | double precision | eigenvalues of the hessian |
|
||
|
| W(n,n) | double precision | eigenvectors of the hessian |
|
||
|
| v_grad(n) | double precision | gradient |
|
||
|
| lambda | double precision | Lagrange multiplier |
|
||
|
| delta | double precision | Delta of the trust region |
|
||
|
|
||
|
Internal:
|
||
|
| wtg | double precision | temporary variable to store W^T.v_grad |
|
||
|
| i,j | integer | indexes |
|
||
|
|
||
|
Function:
|
||
|
| d2_norm_inverse_trust_region | double precision | value of the first derivative |
|
||
|
|
||
|
#+BEGIN_SRC f90 :comments org :tangle trust_region_optimal_lambda.irp.f
|
||
|
function d2_norm_inverse_trust_region(n,e_val,w,v_grad,lambda,delta)
|
||
|
|
||
|
include 'pi.h'
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute the second derivative of (1/||x||^2 - 1/Delta^2)^2
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n
|
||
|
double precision, intent(in) :: e_val(n)
|
||
|
double precision, intent(in) :: w(n,n)
|
||
|
double precision, intent(in) :: v_grad(n)
|
||
|
double precision, intent(in) :: lambda
|
||
|
double precision, intent(in) :: delta
|
||
|
|
||
|
! Internal
|
||
|
double precision :: wtg, accu1, accu2, accu3
|
||
|
integer :: i,j
|
||
|
|
||
|
! Functions
|
||
|
double precision :: d2_norm_inverse_trust_region
|
||
|
|
||
|
accu1 = 0d0
|
||
|
accu2 = 0d0
|
||
|
accu3 = 0d0
|
||
|
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
wtg = 0d0
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
accu1 = accu1 + wtg**2 / (e_val(i) + lambda)**2
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
wtg = 0d0
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
accu2 = accu2 + wtg**2 / (e_val(i) + lambda)**3
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
do i = 1, n
|
||
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
||
|
wtg = 0d0
|
||
|
do j = 1, n
|
||
|
wtg = wtg + w(j,i) * v_grad(j)
|
||
|
enddo
|
||
|
accu3 = accu3 + wtg**2 / (e_val(i) + lambda)**4
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
d2_norm_inverse_trust_region = 4d0 * (6d0 * accu2**2/accu1**4 - 3d0 * accu3/accu1**3) &
|
||
|
- 4d0/delta**2 * (4d0 * accu2**2/accu1**3 - 3d0 * accu3/accu1**2)
|
||
|
|
||
|
end
|
||
|
#+END_SRC
|