9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-07 02:43:01 +01:00
qp2/plugins/local/mo_localization/org/localization.org

2900 lines
82 KiB
Org Mode
Raw Normal View History

2023-04-18 13:22:46 +02:00
* Orbital localization
Molecular orbitals localization
** Doc
The program localizes the orbitals in function of their mo_class:
- core MOs
- inactive MOs
- active MOs
- virtual MOs
- deleted MOs -> no orbital localization
Core MOs are localized with core MOs, inactives MOs are localized with
inactives MOs and so on. But deleted orbitals are not localized.
WARNING:
- The user MUST SPECIFY THE MO CLASSES, otherwise if default mo class
is false the localization will be done for all the orbitals between
them, so the occupied and virtual MOs will be combined together
which is clearly not what we want to do. If default lpmo class is true
the localization will be done for the core, occupied and virtual
orbitals, but pay attention the mo_class are not deleted after...
- The mo class is not important (except "deleted") because it is not
link to the kind of MOs for CASSCF or CIPSI. It is just a way to
separate the MOs in order to localize them separetely, for example
to separate the core MOs, the occupied MOs and the virtuals MOs.
- The user MUST CHANGE THE MO CLASSES AFTER THE LOCALIZATION in order
to have the right mo class for his next calculation...
For more information on the mo_class:
lpqp set_mo_class -h
*** Foster-Boys localization
Foster-Boys localization:
- cite Foster
Boys, S. F., 1960, Rev. Mod. Phys. 32, 296.
DOI:https://doi.org/10.1103/RevModPhys.32.300
Boys, S. F., 1966, in Quantum Theory of Atoms, Molecules,
and the Solid State, edited by P.-O. Löwdin (Academic
Press, New York), p. 253.
Daniel A. Kleier, Thomas A. Halgren, John H. Hall Jr., and William
N. Lipscomb, J. Chem. Phys. 61, 3905 (1974)
doi: 10.1063/1.1681683
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Comput. Chem. 2013, 34,
1456 1462. DOI: 10.1002/jcc.23281
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Theory
Comput. 2012, 8, 9, 31373146
DOI: https://doi.org/10.1021/ct300473g
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Phys. 137, 224114
(2012)
DOI: https://doi.org/10.1063/1.4769866
Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt
Rev. Mod. Phys. 84, 1419
https://doi.org/10.1103/RevModPhys.84.1419
The Foster-Boys localization is a method to generate localized MOs
(LMOs) by minimizing the Foster-Boys criterion:
$$ C_{FB} = \sum_{i=1}^N \left[ < \phi_i | r^2 | \phi_i > - < \phi_i | r |
\phi_i >^2 \right] $$.
In fact it is equivalent to maximise
$$ C_2 = \sum_{i>j, \ i=1}^N \left[ < \phi_i | r | \phi_i > - <
\phi_j | r | \phi_j > \left]^2$$
or
$$ C_3 = \sum_{i=1}^N \left[ < \phi_i | r | \phi_i > \right]^2.$$
Noting
$$A_{ii} = < \phi_i | r^2 | \phi_i > $$
$$B_{ii} = < \phi_i | r | \phi_i > $$
$$ \beta = (B_{pp} - B_{qq})^2 - 4 B_{pq}^2 $$
$$ \gamma = 4 B_{pq} (B_{pp} - B_{qq}) $$
\begin{align*}
C_{FB}(\theta) &= \sum_{i=1}^N \left[ A_{ii} - B_{ii}^2 \right] \\
&- \left[ A_{pp} - B_{pp}^2 + A_{qq} - B_{qq}^2 \right] \\
&+ \left[ A_{pp} + A_{qq} - B_{pp}^2 - B_{qq}^2
+ \frac{1}{4} [(1-\cos(4\theta) \beta + \sin(4\theta) \gamma] \right] \\
&= C_1(\theta=0) + \frac{1}{4} [(1-\cos(4\theta)) \beta + \sin(4\theta) \gamma]
\end{align*}
The derivatives are:
\begin{align*}
\frac{\partial C_{FB}(\theta)}{\partial \theta} = \beta \sin(4\theta) + \gamma \cos(4 \theta)
\end{align*}
\begin{align*}
\frac{\partial^2 C_{FB}(\theta)}{\partial \theta^2} = 4 \beta \cos(4\theta) - 4 \gamma \sin(4 \theta)
\end{align*}
Similarly:
\begin{align*}
C_3(\theta) &= \sum_{i=1}^N [B_{ii}^2] \\
&- B_{pp}^2 - B_{qq}^2 \\
&+ B_{pp}^2 + B_{qq}^2 - \frac{1}{4} [(1-\cos(4\theta) \beta + \sin(4\theta) \gamma] \\
&= C_3(\theta=0) - \frac{1}{4} [(1-\cos(4\theta)) \beta + \sin(4\theta) \gamma]
\end{align*}
The derivatives are:
\begin{align*}
\frac{\partial C_3(\theta)}{\partial \theta} = - \beta \sin(4\theta) - \gamma \cos(4 \theta)
\end{align*}
\begin{align*}
\frac{\partial^2 C_3(\theta)}{\partial \theta^2} = - 4 \beta \cos(4\theta) + 4 \gamma \sin(4 \theta)
\end{align*}
And since we compute the derivatives around $\theta = 0$ (around the
actual position) we have:
\begin{align*}
\left. \frac{\partial{C_{FB}(\theta)}}{\partial \theta}\right|_{\theta=0} = \gamma
\end{align*}
\begin{align*}
\left. \frac{\partial^2 C_{FB}(\theta)}{\partial \theta^2}\right|_{\theta=0} = 4 \beta
\end{align*}
Locality of the orbitals:
- cite Hoyvik
As the Foster-Boys method tries to minimize the sum of the second
moment MO spread, the locality of each MO can be expressed as the
second moment of the MO spread. For the MO i, the locality criterion is
\begin{align*}
\sigma_i &= \sqrt{ <i|r^2|i> - <i|r|i>^2} \\
&= \sqrt{ <i|x^2|i> - <i|x|i>^2 + <i|y^2|i> - <i|y|i>^2 + <i|z^2|i> - <i|z|i>^2}
\end{align*}
*** Pipek-Mezey localization
-cite pipek mezey 1989
J. Pipek, P. G. Mezey, J. Chem. Phys. 90, 4916 (1989)
DOI: 10.1063/1.456588
Foster-Boys localization does not preserve the $\sigma - \pi$ separation of the
MOs, it leads to "banana" orbitals. The Pipek-Mezey localization
normally preserves this separation.
The optimum functional $\mathcal{P}$ is obtained for the maximum of
$D^{-1}$
\begin{align*}
\mathcal{P} = \sum_{i=1}^n \sum_{A=1}^N \left[ <i|P_A|i> \right]^2
\end{align*}
As for the Foster Boys localization, the change in the functional for
the rotation of two MOs can be obtained using very similar terms
\begin{align*}
\beta_{st}^{PM} = \sum_{A=1}^N \left( <s|P_A|t>^2 - \frac{1}{4} \left[<s|P_A|s> - <t|P_A|t> \right]^2 \right)
\end{align*}
\begin{align*}
\gamma_{st}^{PM} = \sum_{A=1}^N <s|P_A|t> \left[ <s| P_A |s> - <t|P_A|t> \right]
\end{align*}
The matrix element of the operator $P_A$ are obtained using
\begin{align*}
<\rho | \tilde{\mu}> = \delta_{\rho \mu}
\end{align*}
which leads to
\begin{align*}
<s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right]
\end{align*}
$\sum_{\rho}$ -> sum over all the AOs
$\sum_{\mu \in A}$ -> sum over the AOs which belongs to atom A
$c^t$ -> expansion coefficient of orbital |t>
So similarly the first and second derivatives are
\begin{align*}
\left. \frac{\partial \mathcal{P} (\theta)}{\partial \theta} \right|_{\theta=0}= \gamma^{PM}
\end{align*}
\begin{align*}
\left. \frac{\partial^2 \mathcal{P} (\theta)}{\partial \theta^2}\right|_{\theta=0} = 4 \beta^{PM}
\end{align*}
** Localization procedure
Localization procedure:
To do the localization we compute the gradient and the
diagonal hessian of the Foster-Boys criterion with respect to the MO
rotations and we minimize it with the Newton method.
In order to avoid the problem of starting on a saddle point, the
localization procedure starts by giving a little kick in the MOs, by
putting "kick in mos" true, in order to break the symmetry and escape
from a possible saddle point.
In order to speed up the iteration we compute the gradient, the
diagonal hessian and the step in temporary matrices of the size
(number MOs in mo class by number MOs in mo class)
** Remarks
Variables:
The indexes i and j refere to the positions of the elements in
the "full space", i.e., the arrays containing elements for all the MOs,
but the indexes tmp_i and tmp_j to the positions of the elements in
the "reduced space/subspace", i.e., the arrays containing elements for
a restricted number of MOs.
Example:
The gradient for the localization of the core MOs can be expressed
as a vector of length mo_num*(mo_num-1)/2 with only
n_core_orb*(n_core_orb-1)/2 non zero elements, so it is more relevant
to use a vector of size n_act_orb*(n_core_orb-1)/2.
So here the gradient is a vector of size
tmp_list_size*(tmp_list_size)/2 where tmp_list_size is the number of
MOs is the corresponding mo class.
The same thing happened for the hessian, the matrix containing the
step and the rotation matrix, which are tmp_list_size by tmp_list_size
matrices.
Ex gradient for 4 core orbitales:
\begin{align*}
\begin{pmatrix}
0 & -a & -b & -d & \hdots & 0 \\
a & 0 & -c & -e & \hdots & 0 \\
b & c & 0 & -f & \hdots & 0 \\
d & e & f & 0 & \hdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \hdots & 0 \\
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
a \\
b \\
c \\
e \\
f \\
0 \\
\vdots \\
0 \\
\end{pmatrix}
\end{align*}
\begin{align*}
\begin{pmatrix}
0 & -a & -b & -d & \hdots & 0 \\
a & 0 & -c & -e & \hdots & 0 \\
b & c & 0 & -f & \hdots & 0 \\
d & e & f & 0 & \hdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \hdots & 0 \\
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
0 & -a & -b & -d \\
a & 0 & -c & -e \\
b & c & 0 & -f \\
d & e & f & 0 \\
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
a \\
b \\
c \\
e \\
f \\
\end{pmatrix}
\end{align*}
The same thing can be done if indexes of the orbitales are not
consecutives since it's done with lists of MOs:
\begin{align*}
\begin{pmatrix}
0 & -a & 0 & -b & -d & \hdots & 0 \\
a & 0 & 0 & -c & -e & \hdots & 0 \\
0 & 0 & 0 & 0 & 0 & \hdots & 0 \\
b & c & 0 & 0 & -f & \hdots & 0 \\
d & e & 0 & f & 0 & \hdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0 & \hdots & 0 \\
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
0 & -a & -b & -d \\
a & 0 & -c & -e \\
b & c & 0 & -f \\
d & e & f & 0 \\
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
a \\
b \\
c \\
e \\
f \\
\end{pmatrix}
\end{align*}
The dipoles are updated using the "ao to mo" subroutine without the
"restore symmetry" which is actually in N^4 but can be rewrite in N^2
log(N^2).
The bottleneck of the program is normally N^3 with the matrix
multiplications/diagonalizations. The use of the full hessian can be
an improvement but it will scale in N^4...
** Program
#+BEGIN_SRC f90 org :tangle localization.irp.f
program localization
implicit none
call set_classes_loc
call run_localization
call unset_classes_loc
end
#+END_SRC
Variables:
| pre_rot(mo_num, mo_num) | double precision | Matrix for the pre rotation |
| R(mo_num,mo_num) | double precision | Rotation matrix |
| tmp_R(:,:) | double precision | Rottation matrix in a subsapce |
| prev_mos(ao_num, mo_num) | double precision | Previous mo_coef |
| spatial_extent(mo_num) | double precision | Spatial extent of the orbitals |
| criterion | double precision | Localization criterion |
| prev_criterion | double precision | Previous criterion |
| criterion_model | double precision | Estimated next criterion |
| rho | double precision | Ratio to measure the agreement between the model |
| | | and the reality |
| delta | double precision | Radisu of the trust region |
| norm_grad | double precision | Norm of the gradient |
| info | integer | for dsyev from Lapack |
| max_elem | double precision | maximal element in the gradient |
| v_grad(:) | double precision | Gradient |
| H(:,:) | double precision | Hessian (diagonal) |
| e_val(:) | double precision | Eigenvalues of the hessian |
| W(:,:) | double precision | Eigenvectors of the hessian |
| tmp_x(:) | double precision | Step in 1D (in a subaspace) |
| tmp_m_x(:,:) | double precision | Step in 2D (in a subaspace) |
| tmp_list(:) | double precision | List of MOs in a mo_class |
| i,j,k | integer | Indexes in the full MO space |
| tmp_i, tmp_j, tmp_k | integer | Indexes in a subspace |
| l | integer | Index for the mo_class |
| key(:) | integer | Key to sort the eigenvalues of the hessian |
| nb_iter | integer | Number of iterations |
| must_exit | logical | To exit the trust region loop |
| cancel_step | logical | To cancel a step |
| not_*converged | logical | To localize the different mo classes |
| t* | double precision | To measure the time |
| n | integer | mo_num*(mo_num-1)/2, number of orbital parameters |
| tmp_n | integer | dim_subspace*(dim_subspace-1)/2 |
| | | Number of dimension in the subspace |
Variables in qp_edit for the localization:
| localization_method |
| localization_max_nb_iter |
| default_mo_class |
| thresh_loc_max_elem_grad |
| kick_in_mos |
| angle_pre_rot |
+ all the variables for the trust region
Cf. qp_edit orbital optimization
#+BEGIN_SRC f90 :comments org :tangle localization.irp.f
subroutine run_localization
include 'pi.h'
BEGIN_DOC
! Orbital localization
END_DOC
implicit none
! Variables
double precision, allocatable :: pre_rot(:,:), R(:,:)
double precision, allocatable :: prev_mos(:,:), spatial_extent(:), tmp_R(:,:)
double precision :: criterion, norm_grad
integer :: i,j,k,l,p, tmp_i, tmp_j, tmp_k
integer :: info
integer :: n, tmp_n, tmp_list_size
double precision, allocatable :: v_grad(:), H(:), tmp_m_x(:,:), tmp_x(:),W(:),e_val(:)
double precision :: max_elem, t1, t2, t3, t4, t5, t6
integer, allocatable :: tmp_list(:), key(:)
double precision :: prev_criterion, rho, delta, criterion_model
integer :: nb_iter, nb_sub_iter
logical :: not_converged, not_core_converged
logical :: not_act_converged, not_inact_converged, not_virt_converged
logical :: use_trust_region, must_exit, cancel_step,enforce_step_cancellation
n = mo_num*(mo_num-1)/2
! Allocation
allocate(spatial_extent(mo_num))
allocate(pre_rot(mo_num, mo_num), R(mo_num, mo_num))
allocate(prev_mos(ao_num, mo_num))
! Locality before the localization
call compute_spatial_extent(spatial_extent)
! Choice of the method
print*,''
print*,'Localization method:',localization_method
if (localization_method == 'boys') then
print*,'Foster-Boys localization'
elseif (localization_method == 'pipek') then
print*,'Pipek-Mezey localization'
else
print*,'Unknown localization_method, please select boys or pipek'
call abort
endif
print*,''
! Localization criterion (FB, PM, ...) for each mo_class
print*,'### Before the pre rotation'
! Debug
if (debug_hf) then
print*,'HF energy:', HF_energy
endif
do l = 1, 4
if (l==1) then ! core
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
tmp_list_size = dim_list_inact_orb
else ! virt
tmp_list_size = dim_list_virt_orb
endif
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
if (tmp_list_size >= 2) then
call criterion_localization(tmp_list_size, tmp_list,criterion)
print*,'Criterion:', criterion, mo_class(tmp_list(1))
endif
deallocate(tmp_list)
enddo
! Debug
!print*,'HF', HF_energy
#+END_SRC
** Loc
#+BEGIN_SRC f90 :comments org :tangle localization.irp.f
! Pre rotation, to give a little kick in the MOs
call apply_pre_rotation()
! Criterion after the pre rotation
! Localization criterion (FB, PM, ...) for each mo_class
print*,'### After the pre rotation'
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
do l = 1, 4
if (l==1) then ! core
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
tmp_list_size = dim_list_inact_orb
else ! virt
tmp_list_size = dim_list_virt_orb
endif
if (tmp_list_size >= 2) then
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
call criterion_localization(tmp_list_size, tmp_list,criterion)
print*,'Criterion:', criterion, trim(mo_class(tmp_list(1)))
deallocate(tmp_list)
endif
enddo
! Debug
!print*,'HF', HF_energy
print*,''
print*,'========================'
print*,' Orbital localization'
print*,'========================'
print*,''
!Initialization
not_converged = .TRUE.
! To do the localization only if there is at least 2 MOs
if (dim_list_core_orb >= 2) then
not_core_converged = .TRUE.
else
not_core_converged = .FALSE.
endif
if (dim_list_act_orb >= 2) then
not_act_converged = .TRUE.
else
not_act_converged = .FALSE.
endif
if (dim_list_inact_orb >= 2) then
not_inact_converged = .TRUE.
else
not_inact_converged = .FALSE.
endif
if (dim_list_virt_orb >= 2) then
not_virt_converged = .TRUE.
else
not_virt_converged = .FALSE.
endif
! Loop over the mo_classes
do l = 1, 4
if (l==1) then ! core
not_converged = not_core_converged
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
not_converged = not_act_converged
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
not_converged = not_inact_converged
tmp_list_size = dim_list_inact_orb
else ! virt
not_converged = not_virt_converged
tmp_list_size = dim_list_virt_orb
endif
! Next iteration if converged = true
if (.not. not_converged) then
cycle
endif
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
! Display
if (not_converged) then
print*,''
print*,'###', trim(mo_class(tmp_list(1))), 'MOs ###'
print*,''
endif
! Size for the 2D -> 1D transformation
tmp_n = tmp_list_size * (tmp_list_size - 1)/2
! Without hessian + trust region
if (.not. localization_use_hessian) then
! Allocation of temporary arrays
allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
! Criterion
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Init
nb_iter = 0
delta = 1d0
!Loop
do while (not_converged)
print*,''
print*,'***********************'
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Angles of rotation
call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
tmp_m_x = - tmp_m_x * delta
! Rotation submatrix
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation)
! To ensure that the rotation matrix is unitary
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
delta = delta * 0.5d0
cycle
else
delta = min(delta * 2d0, 1d0)
endif
! Full rotation matrix and application of the rotation
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
call apply_mo_rotation(R, prev_mos)
! Update the needed data
call update_data_localization()
! New criterion
call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
print*,'Max elem :', max_elem
print*,'Delta :', delta
nb_iter = nb_iter + 1
! Exit
if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
enddo
! Save the changes
call update_data_localization()
call save_mos()
TOUCH mo_coef
! Deallocate
deallocate(v_grad, tmp_m_x, tmp_list)
deallocate(tmp_R, tmp_x)
! Trust region
else
! Allocation of temporary arrays
allocate(v_grad(tmp_n), H(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size))
allocate(tmp_x(tmp_n), W(tmp_n), e_val(tmp_n), key(tmp_n))
! ### Initialization ###
delta = 0d0 ! can be deleted (normally)
nb_iter = 0 ! Must start at 0 !!!
rho = 0.5d0 ! Must be 0.5
! Compute the criterion before the loop
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Loop until the convergence
do while (not_converged)
print*,''
print*,'***********************'
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Gradient
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
! Diagonal hessian
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
! Diagonalization of the diagonal hessian by hands
!call diagonalization_hessian(tmp_n,H,e_val,w)
do i = 1, tmp_n
e_val(i) = H(i)
enddo
! Key list for dsort
do i = 1, tmp_n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, tmp_n)
! Eigenvectors
W = 0d0
do i = 1, tmp_n
W(i) = dble(key(i))
enddo
! To enter in the loop just after
cancel_step = .True.
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*, mo_class(tmp_list(1))
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'Max elem grad:', max_elem
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n,1, H, W, e_val, v_grad, prev_criterion, &
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
! Internal loop exit condition
if (must_exit) then
print*,'trust_region_step_w_expected_e sent: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation)
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
! Rotation of the MOs
call apply_mo_rotation(R, prev_mos)
! Update the things related to mo_coef
call update_data_localization()
! Update the criterion
call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
criterion_model, rho, cancel_step)
! Cancellation of the step, previous MOs
if (cancel_step) then
mo_coef = prev_mos
endif
nb_sub_iter = nb_sub_iter + 1
enddo
!call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exti = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > localization_max_nb_iter) then
not_converged = .False.
endif
enddo
! Deallocation of temporary arrays
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
! Save the MOs
call save_mos()
TOUCH mo_coef
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
endif
enddo
! Seems unecessary
TOUCH mo_coef
! To sort the MOs using the diagonal elements of the Fock matrix
if (sort_mos_by_e) then
call run_sort_by_fock_energies()
endif
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
! Locality after the localization
call compute_spatial_extent(spatial_extent)
end
#+END_SRC
** Gathering
Gradient/hessian/criterion for the localization:
They are chosen in function of the localization method
Gradient:
qp_edit :
| localization_method | method for the localization |
Input:
| tmp_n | integer | Number of parameters in the MO subspace |
| tmp_list_size | integer | Number of MOs in the mo_class we want to localize |
| tmp_list(tmp_list_size) | integer | MOs in the mo_class |
Output:
| v_grad(tmp_n) | double precision | Gradient in the subspace |
| max_elem | double precision | Maximal element in the gradient |
| norm_grad | double precision | Norm of the gradient |
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
include 'pi.h'
implicit none
BEGIN_DOC
! Compute the gradient of the chosen localization method
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
if (localization_method == 'boys') then
call gradient_FB_omp(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
!call gradient_FB(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
elseif (localization_method== 'pipek') then
call gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
else
print*,'Unkown method:'//localization_method
call abort
endif
end
#+END_SRC
Hessian:
Output:
| H(tmp_n,tmp_n) | double precision | Gradient in the subspace |
| max_elem | double precision | Maximal element in the gradient |
| norm_grad | double precision | Norm of the gradient |
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
include 'pi.h'
implicit none
BEGIN_DOC
! Compute the diagonal hessian of the chosen localization method
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: H(tmp_n)
if (localization_method == 'boys') then
call hessian_FB_omp(tmp_n, tmp_list_size, tmp_list, H)
!call hessian_FB(tmp_n, tmp_list_size, tmp_list, H) ! non OMP for debugging
elseif (localization_method == 'pipek') then
call hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
else
print*,'Unkown method: '//localization_method
call abort
endif
end
#+END_SRC
Criterion:
Output:
| criterion | double precision | Criterion for the orbital localization |
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine criterion_localization(tmp_list_size, tmp_list,criterion)
include 'pi.h'
implicit none
BEGIN_DOC
! Compute the localization criterion of the chosen localization method
END_DOC
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: criterion
if (localization_method == 'boys') then
call criterion_FB(tmp_list_size, tmp_list, criterion)
elseif (localization_method == 'pipek') then
!call criterion_PM(tmp_list_size, tmp_list,criterion)
call criterion_PM_v3(tmp_list_size, tmp_list, criterion)
else
print*,'Unkown method: '//localization_method
call abort
endif
end
#+END_SRC
Subroutine to update the datas needed for the localization
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine update_data_localization()
include 'pi.h'
implicit none
if (localization_method == 'boys') then
! Update the dipoles
call ao_to_mo_no_sym(ao_dipole_x, ao_num, mo_dipole_x, mo_num)
call ao_to_mo_no_sym(ao_dipole_y, ao_num, mo_dipole_y, mo_num)
call ao_to_mo_no_sym(ao_dipole_z, ao_num, mo_dipole_z, mo_num)
elseif (localization_method == 'pipek') then
! Nothing required
else
print*,'Unkown method: '//localization_method
call abort
endif
end
#+END_SRC
Angles:
Output:
| tmp_m_x(tmp_list_size, tmp_list_size) | double precision | Angles for the rotations in the subspace |
| max_elem | double precision | Maximal angle |
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
include 'pi.h'
implicit none
BEGIN_DOC
! Compute the rotation angles between the MOs for the chosen localization method
END_DOC
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: tmp_m_x(tmp_list_size,tmp_list_size), max_elem
if (localization_method == 'boys') then
call theta_FB(tmp_list, tmp_list_size, tmp_m_x, max_elem)
elseif (localization_method== 'pipek') then
call theta_PM(tmp_list, tmp_list_size, tmp_m_x, max_elem)
else
print*,'Unkown method: '//localization_method
call abort
endif
end
#+END_SRC
** Foster-Boys
*** Gradient
Input:
| tmp_n | integer | Number of parameters in the MO subspace |
| tmp_list_size | integer | Number of MOs in the mo_class we want to localize |
| tmp_list(tmp_list_size) | integer | MOs in the mo_class |
Output:
| v_grad(tmp_n) | double precision | Gradient in the subspace |
| max_elem | double precision | Maximal element in the gradient |
| norm_grad | double precision | Norm of the gradient |
Internal:
| m_grad(tmp_n,tmp_n) | double precision | Gradient in the matrix form |
| i,j,k | integer | indexes in the full space |
| tmp_i,tmp_j,tmp_k | integer | indexes in the subspace |
| t* | double precision | to compute the time |
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine gradient_FB(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
implicit none
BEGIN_DOC
! Compute the gradient for the Foster-Boys localization
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
double precision, allocatable :: m_grad(:,:)
integer :: i,j,k,tmp_i,tmp_j,tmp_k
double precision :: t1, t2, t3
print*,''
print*,'---gradient_FB---'
call wall_time(t1)
! Allocation
allocate(m_grad(tmp_list_size, tmp_list_size))
! Calculation
do tmp_j = 1, tmp_list_size
j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
m_grad(tmp_i,tmp_j) = 4d0 * mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
+4d0 * mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
+4d0 * mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
enddo
enddo
! 2D -> 1D
do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
enddo
! Maximum element in the gradient
max_elem = 0d0
do tmp_k = 1, tmp_n
if (ABS(v_grad(tmp_k)) > max_elem) then
max_elem = ABS(v_grad(tmp_k))
endif
enddo
! Norm of the gradient
norm_grad = 0d0
do tmp_k = 1, tmp_n
norm_grad = norm_grad + v_grad(tmp_k)**2
enddo
norm_grad = dsqrt(norm_grad)
print*, 'Maximal element in the gradient:', max_elem
print*, 'Norm of the gradient:', norm_grad
! Deallocation
deallocate(m_grad)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in gradient_FB:', t3
print*,'---End gradient_FB---'
end subroutine
#+END_SRC
*** Gradient (OMP)
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine gradient_FB_omp(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
use omp_lib
implicit none
BEGIN_DOC
! Compute the gradient for the Foster-Boys localization
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
double precision, allocatable :: m_grad(:,:)
integer :: i,j,k,tmp_i,tmp_j,tmp_k
double precision :: t1, t2, t3
print*,''
print*,'---gradient_FB_omp---'
call wall_time(t1)
! Allocation
allocate(m_grad(tmp_list_size, tmp_list_size))
! Initialization omp
call omp_set_max_active_levels(1)
!$OMP PARALLEL &
!$OMP PRIVATE(i,j,tmp_i,tmp_j,tmp_k) &
!$OMP SHARED(tmp_n,tmp_list_size,m_grad,v_grad,mo_dipole_x,mo_dipole_y,mo_dipole_z,tmp_list) &
!$OMP DEFAULT(NONE)
! Calculation
!$OMP DO
do tmp_j = 1, tmp_list_size
j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
m_grad(tmp_i,tmp_j) = 4d0 * mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
+4d0 * mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
+4d0 * mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
enddo
enddo
!$OMP END DO
! 2D -> 1D
!$OMP DO
do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
enddo
!$OMP END DO
!$OMP END PARALLEL
call omp_set_max_active_levels(4)
! Maximum element in the gradient
max_elem = 0d0
do tmp_k = 1, tmp_n
if (ABS(v_grad(tmp_k)) > max_elem) then
max_elem = ABS(v_grad(tmp_k))
endif
enddo
! Norm of the gradient
norm_grad = 0d0
do tmp_k = 1, tmp_n
norm_grad = norm_grad + v_grad(tmp_k)**2
enddo
norm_grad = dsqrt(norm_grad)
print*, 'Maximal element in the gradient:', max_elem
print*, 'Norm of the gradient:', norm_grad
! Deallocation
deallocate(m_grad)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in gradient_FB_omp:', t3
print*,'---End gradient_FB_omp---'
end subroutine
#+END_SRC
*** Hessian
Output:
| H(tmp_n,tmp_n) | double precision | Gradient in the subspace |
| max_elem | double precision | Maximal element in the gradient |
| norm_grad | double precision | Norm of the gradient |
Internal:
Internal:
| beta(tmp_n,tmp_n) | double precision | beta in the documentation below to compute the hesian |
| i,j,k | integer | indexes in the full space |
| tmp_i,tmp_j,tmp_k | integer | indexes in the subspace |
| t* | double precision | to compute the time |
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine hessian_FB(tmp_n, tmp_list_size, tmp_list, H)
implicit none
BEGIN_DOC
! Compute the diagonal hessian for the Foster-Boys localization
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: H(tmp_n)
double precision, allocatable :: beta(:,:)
integer :: i,j,tmp_k,tmp_i, tmp_j
double precision :: max_elem, t1,t2,t3
print*,''
print*,'---hessian_FB---'
call wall_time(t1)
! Allocation
allocate(beta(tmp_list_size,tmp_list_size))
! Calculation
do tmp_j = 1, tmp_list_size
j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 - 4d0 * mo_dipole_x(i,j)**2 &
+(mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 - 4d0 * mo_dipole_y(i,j)**2 &
+(mo_dipole_z(i,i) - mo_dipole_z(j,j))**2 - 4d0 * mo_dipole_z(i,j)**2
enddo
enddo
! Diagonal of the hessian
H = 0d0
do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
enddo
! Deallocation
deallocate(beta)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in hessian_FB:', t3
print*,'---End hessian_FB---'
end subroutine
#+END_SRC
*** Hessian (OMP)
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine hessian_FB_omp(tmp_n, tmp_list_size, tmp_list, H)
implicit none
BEGIN_DOC
! Compute the diagonal hessian for the Foster-Boys localization
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: H(tmp_n)
double precision, allocatable :: beta(:,:)
integer :: i,j,tmp_k,tmp_i,tmp_j
double precision :: max_elem, t1,t2,t3
print*,''
print*,'---hessian_FB_omp---'
call wall_time(t1)
! Allocation
allocate(beta(tmp_list_size,tmp_list_size))
! Initialization omp
call omp_set_max_active_levels(1)
!$OMP PARALLEL &
!$OMP PRIVATE(i,j,tmp_i,tmp_j,tmp_k) &
!$OMP SHARED(tmp_n,tmp_list_size,beta,H,mo_dipole_x,mo_dipole_y,mo_dipole_z,tmp_list) &
!$OMP DEFAULT(NONE)
! Calculation
!$OMP DO
do tmp_j = 1, tmp_list_size
j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 - 4d0 * mo_dipole_x(i,j)**2 &
+(mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 - 4d0 * mo_dipole_y(i,j)**2 &
+(mo_dipole_z(i,i) - mo_dipole_z(j,j))**2 - 4d0 * mo_dipole_z(i,j)**2
enddo
enddo
!$OMP END DO
! Initialization
!$OMP DO
do i = 1, tmp_n
H(i) = 0d0
enddo
!$OMP END DO
! Diagonalm of the hessian
!$OMP DO
do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
enddo
!$OMP END DO
!$OMP END PARALLEL
call omp_set_max_active_levels(4)
! Deallocation
deallocate(beta)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in hessian_FB_omp:', t3
print*,'---End hessian_FB_omp---'
end subroutine
#+END_SRC
** Pipek-Mezey
*** Gradient v1
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
implicit none
BEGIN_DOC
! Compute gradient for the Pipek-Mezey localization
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
double precision, allocatable :: m_grad(:,:), tmp_int(:,:)
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
! Allocation
allocate(m_grad(tmp_list_size, tmp_list_size), tmp_int(tmp_list_size, tmp_list_size))
! Initialization
m_grad = 0d0
do a = 1, nucl_num ! loop over the nuclei
tmp_int = 0d0 ! Initialization for each nuclei
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
do tmp_j = 1, tmp_list_size
j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do rho = 1, ao_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b) ! AO centered on atom a
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
enddo
enddo
enddo
enddo
! Gradient
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
enddo
enddo
enddo
! 2D -> 1D
do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
enddo
! Maximum element in the gradient
max_elem = 0d0
do tmp_k = 1, tmp_n
if (ABS(v_grad(tmp_k)) > max_elem) then
max_elem = ABS(v_grad(tmp_k))
endif
enddo
! Norm of the gradient
norm_grad = 0d0
do tmp_k = 1, tmp_n
norm_grad = norm_grad + v_grad(tmp_k)**2
enddo
norm_grad = dsqrt(norm_grad)
print*, 'Maximal element in the gradient:', max_elem
print*, 'Norm of the gradient:', norm_grad
! Deallocation
deallocate(m_grad,tmp_int)
end subroutine grad_pipek
#+END_SRC
*** Gradient
The gradient is
\begin{align*}
\left. \frac{\partial \mathcal{P} (\theta)}{\partial \theta} \right|_{\theta=0}= \gamma^{PM}
\end{align*}
with
\begin{align*}
\gamma_{st}^{PM} = \sum_{A=1}^N <s|P_A|t> \left[ <s| P_A |s> - <t|P_A|t> \right]
\end{align*}
\begin{align*}
<s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right]
\end{align*}
$\sum_{\rho}$ -> sum over all the AOs
$\sum_{\mu \in A}$ -> sum over the AOs which belongs to atom A
$c^t$ -> expansion coefficient of orbital |t>
Input:
| tmp_n | integer | Number of parameters in the MO subspace |
| tmp_list_size | integer | Number of MOs in the mo_class we want to localize |
| tmp_list(tmp_list_size) | integer | MOs in the mo_class |
Output:
| v_grad(tmp_n) | double precision | Gradient in the subspace |
| max_elem | double precision | Maximal element in the gradient |
| norm_grad | double precision | Norm of the gradient |
Internal:
| m_grad(tmp_list_size,tmp_list_size) | double precision | Gradient in a 2D array |
| tmp_int(tmp_list_size,tmp_list_size) | | Temporary array to store the integrals |
| tmp_accu(tmp_list_size,tmp_list_size) | | Temporary array to store a matrix |
| | | product and compute tmp_int |
| CS(tmp_list_size,ao_num) | | Array to store the result of mo_coef * ao_overlap |
| tmp_mo_coef(ao_num,tmp_list_size) | | Array to store just the useful MO coefficients |
| | | depending of the mo_class |
| tmp_mo_coef2(nucl_n_aos(a),tmp_list_size) | | Array to store just the useful MO coefficients |
| | | depending of the nuclei |
| tmp_CS(tmp_list_size,nucl_n_aos(a)) | | Array to store just the useful mo_coef * ao_overlap |
| | | values depending of the nuclei |
| a | | index to loop over the nuclei |
| b | | index to loop over the AOs which belongs to the nuclei a |
| mu | | index to refer to an AO which belongs to the nuclei a |
| rho | | index to loop over all the AOs |
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
implicit none
BEGIN_DOC
! Compute gradient for the Pipek-Mezey localization
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
double precision, allocatable :: m_grad(:,:), tmp_int(:,:), CS(:,:), tmp_mo_coef(:,:), tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
double precision :: t1,t2,t3
print*,''
print*,'---gradient_PM---'
call wall_time(t1)
! Allocation
allocate(m_grad(tmp_list_size, tmp_list_size), tmp_int(tmp_list_size, tmp_list_size),tmp_accu(tmp_list_size, tmp_list_size))
allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))
! submatrix of the mo_coef
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do j = 1, ao_num
tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
enddo
enddo
call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
m_grad = 0d0
do a = 1, nucl_num ! loop over the nuclei
tmp_int = 0d0
!do tmp_j = 1, tmp_list_size
! do tmp_i = 1, tmp_list_size
! do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
! mu = nucl_aos(a,b)
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))
! ! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
! !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
! enddo
! enddo
!enddo
allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
do tmp_i = 1, tmp_list_size
do b = 1, nucl_n_aos(a)
mu = nucl_aos(a,b)
tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)
enddo
enddo
do b = 1, nucl_n_aos(a)
mu = nucl_aos(a,b)
do tmp_i = 1, tmp_list_size
tmp_CS(tmp_i,b) = CS(tmp_i,mu)
enddo
enddo
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
tmp_int(tmp_i,tmp_j) = 0.5d0 * (tmp_accu(tmp_i,tmp_j) + tmp_accu(tmp_j,tmp_i))
enddo
enddo
deallocate(tmp_mo_coef2,tmp_CS)
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
enddo
enddo
enddo
! 2D -> 1D
do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
enddo
! Maximum element in the gradient
max_elem = 0d0
do tmp_k = 1, tmp_n
if (ABS(v_grad(tmp_k)) > max_elem) then
max_elem = ABS(v_grad(tmp_k))
endif
enddo
! Norm of the gradient
norm_grad = 0d0
do tmp_k = 1, tmp_n
norm_grad = norm_grad + v_grad(tmp_k)**2
enddo
norm_grad = dsqrt(norm_grad)
print*, 'Maximal element in the gradient:', max_elem
print*, 'Norm of the gradient:', norm_grad
! Deallocation
deallocate(m_grad,tmp_int,CS,tmp_mo_coef)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in gradient_PM:', t3
print*,'---End gradient_PM---'
end
#+END_SRC
*** Hessian v1
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine hess_pipek(tmp_n, tmp_list_size, tmp_list, H)
implicit none
BEGIN_DOC
! Compute diagonal hessian for the Pipek-Mezey localization
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: H(tmp_n)
double precision, allocatable :: beta(:,:),tmp_int(:,:)
integer :: i,j,tmp_k,tmp_i, tmp_j, a,b,rho,mu
double precision :: max_elem
! Allocation
allocate(beta(tmp_list_size,tmp_list_size),tmp_int(tmp_list_size,tmp_list_size))
beta = 0d0
do a = 1, nucl_num
tmp_int = 0d0
do tmp_j = 1, tmp_list_size
j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do rho = 1, ao_num
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b)
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
enddo
enddo
enddo
enddo
! Calculation
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
beta(tmp_i,tmp_j) = beta(tmp_i, tmp_j) + (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))**2 - 4d0 * tmp_int(tmp_i,tmp_j)**2
enddo
enddo
enddo
H = 0d0
do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
enddo
! Deallocation
deallocate(beta,tmp_int)
end
#+END_SRC
*** Hessian
The hessian is
\begin{align*}
\left. \frac{\partial^2 \mathcal{P} (\theta)}{\partial \theta^2}\right|_{\theta=0} = 4 \beta^{PM}
\end{align*}
\begin{align*}
\beta_{st}^{PM} = \sum_{A=1}^N \left( <s|P_A|t>^2 - \frac{1}{4} \left[<s|P_A|s> - <t|P_A|t> \right]^2 \right)
\end{align*}
with
\begin{align*}
<s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right]
\end{align*}
$\sum_{\rho}$ -> sum over all the AOs
$\sum_{\mu \in A}$ -> sum over the AOs which belongs to atom A
$c^t$ -> expansion coefficient of orbital |t>
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
implicit none
BEGIN_DOC
! Compute diagonal hessian for the Pipek-Mezey localization
END_DOC
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: H(tmp_n)
double precision, allocatable :: beta(:,:),tmp_int(:,:),CS(:,:),tmp_mo_coef(:,:),tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
integer :: i,j,tmp_k,tmp_i, tmp_j, a,b,rho,mu
double precision :: max_elem, t1,t2,t3
print*,''
print*,'---hessian_PM---'
call wall_time(t1)
! Allocation
allocate(beta(tmp_list_size,tmp_list_size),tmp_int(tmp_list_size,tmp_list_size),tmp_accu(tmp_list_size,tmp_list_size))
allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))
beta = 0d0
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do j = 1, ao_num
tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
enddo
enddo
call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
do a = 1, nucl_num ! loop over the nuclei
tmp_int = 0d0
!do tmp_j = 1, tmp_list_size
! do tmp_i = 1, tmp_list_size
! do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
! mu = nucl_aos(a,b)
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))
! ! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
! !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
! enddo
! enddo
!enddo
allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
do tmp_i = 1, tmp_list_size
do b = 1, nucl_n_aos(a)
mu = nucl_aos(a,b)
tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)
enddo
enddo
do b = 1, nucl_n_aos(a)
mu = nucl_aos(a,b)
do tmp_i = 1, tmp_list_size
tmp_CS(tmp_i,b) = CS(tmp_i,mu)
enddo
enddo
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
tmp_int(tmp_i,tmp_j) = 0.5d0 * (tmp_accu(tmp_i,tmp_j) + tmp_accu(tmp_j,tmp_i))
enddo
enddo
deallocate(tmp_mo_coef2,tmp_CS)
! Calculation
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
beta(tmp_i,tmp_j) = beta(tmp_i, tmp_j) + (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))**2 - 4d0 * tmp_int(tmp_i,tmp_j)**2
enddo
enddo
enddo
H = 0d0
do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
enddo
! Deallocation
deallocate(beta,tmp_int)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in hessian_PM:', t3
print*,'---End hessian_PM---'
end
#+END_SRC
** Criterion
*** Criterion PM (old)
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine compute_crit_pipek(criterion)
implicit none
BEGIN_DOC
! Compute the Pipek-Mezey localization criterion
END_DOC
double precision, intent(out) :: criterion
double precision, allocatable :: tmp_int(:,:)
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
! Allocation
allocate(tmp_int(mo_num, mo_num))
criterion = 0d0
do a = 1, nucl_num ! loop over the nuclei
tmp_int = 0d0
do i = 1, mo_num
do rho = 1, ao_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b)
tmp_int(i,i) = tmp_int(i,i) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,i) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,i))
enddo
enddo
enddo
do i = 1, mo_num
criterion = criterion + tmp_int(i,i)**2
enddo
enddo
criterion = - criterion
deallocate(tmp_int)
end
#+END_SRC
*** Criterion PM
The criterion is computed as
\begin{align*}
\mathcal{P} = \sum_{i=1}^n \sum_{A=1}^N \left[ <i|P_A|i> \right]^2
\end{align*}
with
\begin{align*}
<s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right]
\end{align*}
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine criterion_PM(tmp_list_size,tmp_list,criterion)
implicit none
BEGIN_DOC
! Compute the Pipek-Mezey localization criterion
END_DOC
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: criterion
double precision, allocatable :: tmp_int(:,:),CS(:,:)
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
print*,''
print*,'---criterion_PM---'
! Allocation
allocate(tmp_int(tmp_list_size, tmp_list_size),CS(mo_num,ao_num))
! Initialization
criterion = 0d0
call dgemm('T','N',mo_num,ao_num,ao_num,1d0,mo_coef,size(mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
do a = 1, nucl_num ! loop over the nuclei
tmp_int = 0d0
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b)
tmp_int(tmp_i,tmp_i) = tmp_int(tmp_i,tmp_i) + 0.5d0 * (CS(i,mu) * mo_coef(mu,i) + mo_coef(mu,i) * CS(i,mu))
! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
!+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
enddo
enddo
do tmp_i = 1, tmp_list_size
criterion = criterion + tmp_int(tmp_i,tmp_i)**2
enddo
enddo
criterion = - criterion
deallocate(tmp_int,CS)
print*,'---End criterion_PM---'
end
#+END_SRC
*** Criterion PM v3
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine criterion_PM_v3(tmp_list_size,tmp_list,criterion)
implicit none
BEGIN_DOC
! Compute the Pipek-Mezey localization criterion
END_DOC
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: criterion
double precision, allocatable :: tmp_int(:,:), CS(:,:), tmp_mo_coef(:,:), tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho,nu,c
double precision :: t1,t2,t3
print*,''
print*,'---criterion_PM_v3---'
call wall_time(t1)
! Allocation
allocate(tmp_int(tmp_list_size, tmp_list_size),tmp_accu(tmp_list_size, tmp_list_size))
allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))
criterion = 0d0
! submatrix of the mo_coef
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do j = 1, ao_num
tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
enddo
enddo
! ao_overlap(ao_num,ao_num)
! mo_coef(ao_num,mo_num)
call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
do a = 1, nucl_num ! loop over the nuclei
do j = 1, tmp_list_size
do i = 1, tmp_list_size
tmp_int(i,j) = 0d0
enddo
enddo
!do tmp_j = 1, tmp_list_size
! do tmp_i = 1, tmp_list_size
! do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
! mu = nucl_aos(a,b)
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))
! ! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
! !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
! enddo
! enddo
!enddo
allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
do tmp_i = 1, tmp_list_size
do b = 1, nucl_n_aos(a)
mu = nucl_aos(a,b)
tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)
enddo
enddo
do b = 1, nucl_n_aos(a)
mu = nucl_aos(a,b)
do tmp_i = 1, tmp_list_size
tmp_CS(tmp_i,b) = CS(tmp_i,mu)
enddo
enddo
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
! Integrals
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
tmp_int(tmp_i,tmp_j) = 0.5d0 * (tmp_accu(tmp_i,tmp_j) + tmp_accu(tmp_j,tmp_i))
enddo
enddo
deallocate(tmp_mo_coef2,tmp_CS)
! Criterion
do tmp_i = 1, tmp_list_size
criterion = criterion + tmp_int(tmp_i,tmp_i)**2
enddo
enddo
criterion = - criterion
deallocate(tmp_int,CS,tmp_accu,tmp_mo_coef)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in criterion_PM_v3:', t3
print*,'---End criterion_PM_v3---'
end
#+END_SRC
*** Criterion FB (old)
The criterion is just computed as
\begin{align*}
C = - \sum_i^{mo_{num}} (<i|x|i>^2 + <i|y|i>^2 + <i|z|i>^2)
\end{align*}
The minus sign is here in order to minimize this criterion
Output:
| criterion | double precision | criterion for the Foster-Boys localization |
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine criterion_FB_old(criterion)
implicit none
BEGIN_DOC
! Compute the Foster-Boys localization criterion
END_DOC
double precision, intent(out) :: criterion
integer :: i
! Criterion (= \sum_i <i|r|i>^2 )
criterion = 0d0
do i = 1, mo_num
criterion = criterion + mo_dipole_x(i,i)**2 + mo_dipole_y(i,i)**2 + mo_dipole_z(i,i)**2
enddo
criterion = - criterion
end subroutine
#+END_SRC
*** Criterion FB
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine criterion_FB(tmp_list_size, tmp_list, criterion)
implicit none
BEGIN_DOC
! Compute the Foster-Boys localization criterion
END_DOC
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: criterion
integer :: i, tmp_i
! Criterion (= - \sum_i <i|r|i>^2 )
criterion = 0d0
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
criterion = criterion + mo_dipole_x(i,i)**2 + mo_dipole_y(i,i)**2 + mo_dipole_z(i,i)**2
enddo
criterion = - criterion
end subroutine
#+END_SRC
** Theta
In:
| n | integer | number of MOs in the considered MO class |
| l | integer | list of MOs of the considered class |
Out:
| m_x(n,n) | double precision | Matrix containing the rotation angle between all the different |
| | | pairs of MOs to apply the rotations (need a minus sign) |
| max_elem | double precision | Maximal angle in absolute value |
$$\cos(4 \theta) = \frac{-A{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$
$$\sin(4 \theta) = \frac{B{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$
$$\tan(4 \theta) = \frac{\sin(4 \theta)}{\cos(4 \theta)}$$
where $\theta$ is in fact $\theta_{ij}$
For Foster-Boys localization:
$$A_{ij} = <i|r|j>^2 - \frac{1}{4} (<i|r|i> - <j|r|j>)^2$$
$$B_{ij} = <i|r|j> (<i|r|i> - <j|r|j>)$$
For Pipek-Mezey localization:
$$A_{ij} = \sum_A <i|P_A|j>^2 - \frac{1}{4} (<i|P_A|i> - <j|P_A|j>)^2$$
$$B_{ij} = \sum_A <i|P_A|j> (<i|P_A|i> - <j|P_A|j>)$$
with
$$<i|P_A|j> = \frac{1}{2} \sum_\rho \sum_{\mu \in A} ( c_\rho^{i*} S_{\rho
\mu} c_\mu^j + c_\mu^{i*} S_{\mu \rho} c_\rho^j)$$
$i,j$ MOs
$\mu, \rho$ AOs
$A$ nucleus
$S$ overlap matrix
$c$ MO coefficient
$r$ position operator
#+begin_src f90 :tangle localization_sub.irp.f
subroutine theta_FB(l, n, m_x, max_elem)
include 'pi.h'
BEGIN_DOC
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
! Warning: you must give - the angles to build the rotation matrix...
END_DOC
implicit none
integer, intent(in) :: n, l(n)
double precision, intent(out) :: m_x(n,n), max_elem
integer :: i,j, tmp_i, tmp_j
double precision, allocatable :: cos4theta(:,:), sin4theta(:,:)
double precision, allocatable :: A(:,:), B(:,:), beta(:,:), gamma(:,:)
integer :: idx_i,idx_j
allocate(cos4theta(n, n), sin4theta(n, n))
allocate(A(n,n), B(n,n), beta(n,n), gamma(n,n))
do tmp_j = 1, n
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
A(tmp_i,tmp_j) = mo_dipole_x(i,j)**2 - 0.25d0 * (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 &
+ mo_dipole_y(i,j)**2 - 0.25d0 * (mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 &
+ mo_dipole_z(i,j)**2 - 0.25d0 * (mo_dipole_z(i,i) - mo_dipole_z(j,j))**2
enddo
A(j,j) = 0d0
enddo
do tmp_j = 1, n
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
B(tmp_i,tmp_j) = mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
+ mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
+ mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
enddo
enddo
!do tmp_j = 1, n
! j = l(tmp_j)
! do tmp_i = 1, n
! i = l(tmp_i)
! beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j)) - 4d0 * mo_dipole_x(i,j)**2 &
! + (mo_dipole_y(i,i) - mo_dipole_y(j,j)) - 4d0 * mo_dipole_y(i,j)**2 &
! + (mo_dipole_z(i,i) - mo_dipole_z(j,j)) - 4d0 * mo_dipole_z(i,j)**2
! enddo
!enddo
!do tmp_j = 1, n
! j = l(tmp_j)
! do tmp_i = 1, n
! i = l(tmp_i)
! gamma(tmp_i,tmp_j) = 4d0 * ( mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
! + mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
! + mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j)))
! enddo
!enddo
!
!do j = 1, n
! do i = 1, n
! cos4theta(i,j) = - A(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
! enddo
!enddo
!do j = 1, n
! do i = 1, n
! sin4theta(i,j) = B(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
! enddo
!enddo
! Theta
do j = 1, n
do i = 1, n
m_x(i,j) = 0.25d0 * atan2(B(i,j), -A(i,j))
!m_x(i,j) = 0.25d0 * atan2(sin4theta(i,j), cos4theta(i,j))
enddo
enddo
! Enforce a perfect antisymmetry
do j = 1, n-1
do i = j+1, n
m_x(j,i) = - m_x(i,j)
enddo
enddo
do i = 1, n
m_x(i,i) = 0d0
enddo
! Max
max_elem = 0d0
do j = 1, n-1
do i = j+1, n
if (dabs(m_x(i,j)) > dabs(max_elem)) then
max_elem = m_x(i,j)
!idx_i = i
!idx_j = j
endif
enddo
enddo
! Debug
!print*,''
!print*,'sin/B'
!do i = 1, n
! write(*,'(100F10.4)') sin4theta(i,:)
! !B(i,:)
!enddo
!print*,'cos/A'
!do i = 1, n
! write(*,'(100F10.4)') cos4theta(i,:)
! !A(i,:)
!enddo
!print*,'X'
!!m_x = 0d0
!!m_x(idx_i,idx_j) = max_elem
!!m_x(idx_j,idx_i) = -max_elem
!do i = 1, n
! write(*,'(100F10.4)') m_x(i,:)
!enddo
!print*,idx_i,idx_j,max_elem
max_elem = dabs(max_elem)
deallocate(cos4theta, sin4theta)
deallocate(A,B,beta,gamma)
end
#+end_src
#+begin_src f90 :comments org :tangle localization_sub.irp.f
subroutine theta_PM(l, n, m_x, max_elem)
include 'pi.h'
BEGIN_DOC
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
! Warning: you must give - the angles to build the rotation matrix...
END_DOC
implicit none
integer, intent(in) :: n, l(n)
double precision, intent(out) :: m_x(n,n), max_elem
integer :: a,b,i,j,tmp_i,tmp_j,rho,mu,nu,idx_i,idx_j
double precision, allocatable :: Aij(:,:), Bij(:,:), Pa(:,:)
allocate(Aij(n,n), Bij(n,n), Pa(n,n))
do a = 1, nucl_num ! loop over the nuclei
Pa = 0d0 ! Initialization for each nuclei
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
do tmp_j = 1, n
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
do rho = 1, ao_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b) ! AO centered on atom a
Pa(tmp_i,tmp_j) = Pa(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
enddo
enddo
enddo
enddo
! A
do j = 1, n
do i = 1, n
Aij(i,j) = Aij(i,j) + Pa(i,j)**2 - 0.25d0 * (Pa(i,i) - Pa(j,j))**2
enddo
enddo
! B
do j = 1, n
do i = 1, n
Bij(i,j) = Bij(i,j) + Pa(i,j) * (Pa(i,i) - Pa(j,j))
enddo
enddo
enddo
! Theta
do j = 1, n
do i = 1, n
m_x(i,j) = 0.25d0 * atan2(Bij(i,j), -Aij(i,j))
enddo
enddo
! Enforce a perfect antisymmetry
do j = 1, n-1
do i = j+1, n
m_x(j,i) = - m_x(i,j)
enddo
enddo
do i = 1, n
m_x(i,i) = 0d0
enddo
! Max
max_elem = 0d0
do j = 1, n-1
do i = j+1, n
if (dabs(m_x(i,j)) > dabs(max_elem)) then
max_elem = m_x(i,j)
idx_i = i
idx_j = j
endif
enddo
enddo
! Debug
!do i = 1, n
! write(*,'(100F10.4)') m_x(i,:)
!enddo
!print*,'Max',idx_i,idx_j,max_elem
max_elem = dabs(max_elem)
deallocate(Aij,Bij,Pa)
end
#+end_src
** Spatial extent
The spatial extent of an orbital $i$ is computed as
\begin{align*}
\sum_{\lambda=x,y,z}\sqrt{<i|\lambda^2|i> - <i|\lambda|i>^2}
\end{align*}
From that we can also compute the average and the standard deviation
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine compute_spatial_extent(spatial_extent)
implicit none
BEGIN_DOC
! Compute the spatial extent of the MOs
END_DOC
double precision, intent(out) :: spatial_extent(mo_num)
double precision :: average_core, average_act, average_inact, average_virt
double precision :: std_var_core, std_var_act, std_var_inact, std_var_virt
integer :: i,j,k,l
spatial_extent = 0d0
do i = 1, mo_num
spatial_extent(i) = mo_spread_x(i,i) - mo_dipole_x(i,i)**2
enddo
do i = 1, mo_num
spatial_extent(i) = spatial_extent(i) + mo_spread_y(i,i) - mo_dipole_y(i,i)**2
enddo
do i = 1, mo_num
spatial_extent(i) = spatial_extent(i) + mo_spread_z(i,i) - mo_dipole_z(i,i)**2
enddo
do i = 1, mo_num
spatial_extent(i) = dsqrt(spatial_extent(i))
enddo
average_core = 0d0
std_var_core = 0d0
if (dim_list_core_orb >= 2) then
call compute_average_sp_ext(spatial_extent, list_core, dim_list_core_orb, average_core)
call compute_std_var_sp_ext(spatial_extent, list_core, dim_list_core_orb, average_core, std_var_core)
endif
average_act = 0d0
std_var_act = 0d0
if (dim_list_act_orb >= 2) then
call compute_average_sp_ext(spatial_extent, list_act, dim_list_act_orb, average_act)
call compute_std_var_sp_ext(spatial_extent, list_act, dim_list_act_orb, average_act, std_var_act)
endif
average_inact = 0d0
std_var_inact = 0d0
if (dim_list_inact_orb >= 2) then
call compute_average_sp_ext(spatial_extent, list_inact, dim_list_inact_orb, average_inact)
call compute_std_var_sp_ext(spatial_extent, list_inact, dim_list_inact_orb, average_inact, std_var_inact)
endif
average_virt = 0d0
std_var_virt = 0d0
if (dim_list_virt_orb >= 2) then
call compute_average_sp_ext(spatial_extent, list_virt, dim_list_virt_orb, average_virt)
call compute_std_var_sp_ext(spatial_extent, list_virt, dim_list_virt_orb, average_virt, std_var_virt)
endif
print*,''
print*,'============================='
print*,' Spatial extent of the MOs'
print*,'============================='
print*,''
print*, 'elec_num:', elec_num
print*, 'elec_alpha_num:', elec_alpha_num
print*, 'elec_beta_num:', elec_beta_num
print*, 'core:', dim_list_core_orb
print*, 'act:', dim_list_act_orb
print*, 'inact:', dim_list_inact_orb
print*, 'virt:', dim_list_virt_orb
print*, 'mo_num:', mo_num
print*,''
print*,'-- Core MOs --'
print*,'Average:', average_core
print*,'Std var:', std_var_core
print*,''
print*,'-- Active MOs --'
print*,'Average:', average_act
print*,'Std var:', std_var_act
print*,''
print*,'-- Inactive MOs --'
print*,'Average:', average_inact
print*,'Std var:', std_var_inact
print*,''
print*,'-- Virtual MOs --'
print*,'Average:', average_virt
print*,'Std var:', std_var_virt
print*,''
print*,'Spatial extent:'
do i = 1, mo_num
print*, i, spatial_extent(i)
enddo
end
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine compute_average_sp_ext(spatial_extent, list, list_size, average)
implicit none
BEGIN_DOC
! Compute the average spatial extent of the MOs
END_DOC
integer, intent(in) :: list_size, list(list_size)
double precision, intent(in) :: spatial_extent(mo_num)
double precision, intent(out) :: average
integer :: i, tmp_i
average = 0d0
do tmp_i = 1, list_size
i = list(tmp_i)
average = average + spatial_extent(i)
enddo
average = average / DBLE(list_size)
end
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine compute_std_var_sp_ext(spatial_extent, list, list_size, average, std_var)
implicit none
BEGIN_DOC
! Compute the standard deviation of the spatial extent of the MOs
END_DOC
integer, intent(in) :: list_size, list(list_size)
double precision, intent(in) :: spatial_extent(mo_num)
double precision, intent(in) :: average
double precision, intent(out) :: std_var
integer :: i, tmp_i
std_var = 0d0
do tmp_i = 1, list_size
i = list(tmp_i)
std_var = std_var + (spatial_extent(i) - average)**2
enddo
std_var = dsqrt(1d0/DBLE(list_size) * std_var)
end
#+END_SRC
** Utils
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine apply_pre_rotation()
implicit none
BEGIN_DOC
! Apply a rotation between the MOs
END_DOC
double precision, allocatable :: pre_rot(:,:), prev_mos(:,:), R(:,:)
double precision :: t1,t2,t3
integer :: i,j,tmp_i,tmp_j
integer :: info
logical :: enforce_step_cancellation
print*,'---apply_pre_rotation---'
call wall_time(t1)
allocate(pre_rot(mo_num,mo_num), prev_mos(ao_num,mo_num), R(mo_num,mo_num))
! Initialization of the matrix
pre_rot = 0d0
if (kick_in_mos) then
! Pre rotation for core MOs
if (dim_list_core_orb >= 2) then
do tmp_j = 1, dim_list_core_orb
j = list_core(tmp_j)
do tmp_i = 1, dim_list_core_orb
i = list_core(tmp_i)
if (i > j) then
pre_rot(i,j) = angle_pre_rot
elseif (i < j) then
pre_rot(i,j) = - angle_pre_rot
else
pre_rot(i,j) = 0d0
endif
enddo
enddo
endif
! Pre rotation for active MOs
if (dim_list_act_orb >= 2) then
do tmp_j = 1, dim_list_act_orb
j = list_act(tmp_j)
do tmp_i = 1, dim_list_act_orb
i = list_act(tmp_i)
if (i > j) then
pre_rot(i,j) = angle_pre_rot
elseif (i < j) then
pre_rot(i,j) = - angle_pre_rot
else
pre_rot(i,j) = 0d0
endif
enddo
enddo
endif
! Pre rotation for inactive MOs
if (dim_list_inact_orb >= 2) then
do tmp_j = 1, dim_list_inact_orb
j = list_inact(tmp_j)
do tmp_i = 1, dim_list_inact_orb
i = list_inact(tmp_i)
if (i > j) then
pre_rot(i,j) = angle_pre_rot
elseif (i < j) then
pre_rot(i,j) = - angle_pre_rot
else
pre_rot(i,j) = 0d0
endif
enddo
enddo
endif
! Pre rotation for virtual MOs
if (dim_list_virt_orb >= 2) then
do tmp_j = 1, dim_list_virt_orb
j = list_virt(tmp_j)
do tmp_i = 1, dim_list_virt_orb
i = list_virt(tmp_i)
if (i > j) then
pre_rot(i,j) = angle_pre_rot
elseif (i < j) then
pre_rot(i,j) = - angle_pre_rot
else
pre_rot(i,j) = 0d0
endif
enddo
enddo
endif
! Nothing for deleted ones
! Compute pre rotation matrix from pre_rot
call rotation_matrix(pre_rot,mo_num,R,mo_num,mo_num,info,enforce_step_cancellation)
if (enforce_step_cancellation) then
print*, 'Cancellation of the pre rotation, too big error in the rotation matrix'
print*, 'Reduce the angle for the pre rotation, abort'
call abort
endif
! New Mos (we don't car eabout the previous MOs prev_mos)
call apply_mo_rotation(R,prev_mos)
! Update the things related to mo_coef
TOUCH mo_coef
call save_mos
endif
deallocate(pre_rot, prev_mos, R)
call wall_time(t2)
t3 = t2-t1
print*,'Time in apply_pre_rotation:', t3
print*,'---End apply_pre_rotation---'
end
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine x_tmp_orb_loc_v2(tmp_n, tmp_list_size, tmp_list, v_grad, H,tmp_x, tmp_m_x)
implicit none
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(in) :: v_grad(tmp_n)
double precision, intent(in) :: H(tmp_n, tmp_n)
double precision, intent(out) :: tmp_m_x(tmp_list_size, tmp_list_size), tmp_x(tmp_list_size)
!double precision, allocatable :: x(:)
double precision :: lambda , accu, max_elem
integer :: i,j,tmp_i,tmp_j,tmp_k
! Allocation
!allocate(x(tmp_n))
! Level shifted hessian
lambda = 0d0
do tmp_k = 1, tmp_n
if (H(tmp_k,tmp_k) < lambda) then
lambda = H(tmp_k,tmp_k)
endif
enddo
! min element in the hessian
if (lambda < 0d0) then
lambda = -lambda + 1d-6
endif
print*, 'lambda', lambda
! Good
do tmp_k = 1, tmp_n
if (ABS(H(tmp_k,tmp_k)) > 1d-6) then
tmp_x(tmp_k) = - 1d0/(ABS(H(tmp_k,tmp_k))+lambda) * v_grad(tmp_k)!(-v_grad(tmp_k))
!x(tmp_k) = - 1d0/(ABS(H(tmp_k,tmp_k))+lambda) * (-v_grad(tmp_k))
endif
enddo
! 1D tmp -> 2D tmp
tmp_m_x = 0d0
do tmp_j = 1, tmp_list_size - 1
do tmp_i = tmp_j + 1, tmp_list_size
call mat_to_vec_index(tmp_i,tmp_j,tmp_k)
tmp_m_x(tmp_i, tmp_j) = tmp_x(tmp_k)!x(tmp_k)
enddo
enddo
! Antisym
do tmp_i = 1, tmp_list_size - 1
do tmp_j = tmp_i + 1, tmp_list_size
tmp_m_x(tmp_i,tmp_j) = - tmp_m_x(tmp_j,tmp_i)
enddo
enddo
! Deallocation
!deallocate(x)
end subroutine
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine ao_to_mo_no_sym(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the |AO| basis to the |MO| basis
!
! $C^\dagger.A_{ao}.C$
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
double precision, intent(in) :: A_ao(LDA_ao,ao_num)
double precision, intent(out) :: A_mo(LDA_mo,mo_num)
double precision, allocatable :: T(:,:)
allocate ( T(ao_num,mo_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, mo_num, ao_num, &
1.d0, A_ao,LDA_ao, &
mo_coef, size(mo_coef,1), &
0.d0, T, size(T,1))
call dgemm('T','N', mo_num, mo_num, ao_num, &
1.d0, mo_coef,size(mo_coef,1), &
T, ao_num, &
0.d0, A_mo, size(A_mo,1))
deallocate(T)
end
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine run_sort_by_fock_energies()
implicit none
BEGIN_DOC
! Saves the current MOs ordered by diagonal element of the Fock operator.
END_DOC
integer :: i,j,k,l,tmp_i,tmp_k,tmp_list_size
integer, allocatable :: iorder(:), tmp_list(:)
double precision, allocatable :: fock_energies_tmp(:), tmp_mo_coef(:,:)
! Test
do l = 1, 4
if (l==1) then ! core
tmp_list_size = dim_list_core_orb
elseif (l==2) then ! act
tmp_list_size = dim_list_act_orb
elseif (l==3) then ! inact
tmp_list_size = dim_list_inact_orb
else ! virt
tmp_list_size = dim_list_virt_orb
endif
if (tmp_list_size >= 2) then
! Allocation tmp array
allocate(tmp_list(tmp_list_size))
! To give the list of MOs in a mo_class
if (l==1) then ! core
tmp_list = list_core
elseif (l==2) then
tmp_list = list_act
elseif (l==3) then
tmp_list = list_inact
else
tmp_list = list_virt
endif
print*,'MO class: ',trim(mo_class(tmp_list(1)))
allocate(iorder(tmp_list_size), fock_energies_tmp(tmp_list_size), tmp_mo_coef(ao_num,tmp_list_size))
!print*,'MOs before sorting them by f_p^p energies:'
do i = 1, tmp_list_size
tmp_i = tmp_list(i)
fock_energies_tmp(i) = Fock_matrix_diag_mo(tmp_i)
iorder(i) = i
!print*, tmp_i, fock_energies_tmp(i)
enddo
call dsort(fock_energies_tmp, iorder, tmp_list_size)
print*,'MOs after sorting them by f_p^p energies:'
do i = 1, tmp_list_size
k = iorder(i)
tmp_k = tmp_list(k)
print*, tmp_k, fock_energies_tmp(k)
do j = 1, ao_num
tmp_mo_coef(j,k) = mo_coef(j,tmp_k)
enddo
enddo
! Update the MOs after sorting them by energies
do i = 1, tmp_list_size
tmp_i = tmp_list(i)
do j = 1, ao_num
mo_coef(j,tmp_i) = tmp_mo_coef(j,i)
enddo
enddo
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif
print*,''
deallocate(iorder, fock_energies_tmp, tmp_list, tmp_mo_coef)
endif
enddo
touch mo_coef
call save_mos
end
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
function is_core(i)
implicit none
BEGIN_DOC
! True if the orbital i is a core orbital
END_DOC
integer, intent(in) :: i
logical :: is_core
integer :: j
! Init
is_core = .False.
! Search
do j = 1, dim_list_core_orb
if (list_core(j) == i) then
is_core = .True.
exit
endif
enddo
end
function is_del(i)
implicit none
BEGIN_DOC
! True if the orbital i is a deleted orbital
END_DOC
integer, intent(in) :: i
logical :: is_del
integer :: j
! Init
is_del = .False.
! Search
do j = 1, dim_list_core_orb
if (list_core(j) == i) then
is_del = .True.
exit
endif
enddo
end
subroutine set_classes_loc()
implicit none
integer :: i
logical :: ok1, ok2
logical :: is_core, is_del
integer(bit_kind) :: res(N_int,2)
if (auto_mo_class) then
do i = 1, mo_num
if (is_core(i)) cycle
if (is_del(i)) cycle
call apply_hole(psi_det(1,1,1), 1, i, res, ok1, N_int)
call apply_hole(psi_det(1,1,1), 2, i, res, ok2, N_int)
if (ok1 .and. ok2) then
mo_class(i) = 'Inactive'
else if (.not. ok1 .and. .not. ok2) then
mo_class(i) = 'Virtual'
else
mo_class(i) = 'Active'
endif
enddo
touch mo_class
endif
end
subroutine unset_classes_loc()
implicit none
integer :: i
logical :: ok1, ok2
logical :: is_core, is_del
integer(bit_kind) :: res(N_int,2)
if (auto_mo_class) then
do i = 1, mo_num
if (is_core(i)) cycle
if (is_del(i)) cycle
mo_class(i) = 'Active'
enddo
touch mo_class
endif
end
#+END_SRC