2023-06-18 21:42:40 +02:00
|
|
|
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
|
|
|
|
&BEGIN_PROVIDER [integer, n_guess_sx_mat ]
|
|
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
|
|
|
! Single-excitation matrix
|
|
|
|
END_DOC
|
|
|
|
|
|
|
|
integer :: i,j
|
|
|
|
|
|
|
|
do i=1,nMonoEx+1
|
|
|
|
do j=1,nMonoEx+1
|
|
|
|
SXmatrix(i,j)=0.D0
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
|
|
|
|
do i=1,nMonoEx
|
|
|
|
SXmatrix(1,i+1)=gradvec2(i)
|
|
|
|
SXmatrix(1+i,1)=gradvec2(i)
|
|
|
|
end do
|
|
|
|
if(diag_hess_cas)then
|
|
|
|
do i = 1, nMonoEx
|
|
|
|
SXmatrix(i+1,i+1) = hessdiag(i)
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
do i=1,nMonoEx
|
|
|
|
do j=1,nMonoEx
|
|
|
|
SXmatrix(i+1,j+1)=hessmat(i,j)
|
|
|
|
SXmatrix(j+1,i+1)=hessmat(i,j)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
endif
|
|
|
|
|
|
|
|
do i = 1, nMonoEx
|
|
|
|
SXmatrix(i+1,i+1) += level_shift_casscf
|
|
|
|
enddo
|
|
|
|
n_guess_sx_mat = 1
|
|
|
|
do i = 1, nMonoEx
|
|
|
|
if(SXmatrix(i+1,i+1).lt.0.d0 )then
|
|
|
|
n_guess_sx_mat += 1
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
if (bavard) then
|
|
|
|
do i=2,nMonoEx
|
|
|
|
write(6,*) ' diagonal of the Hessian : ',i,hessmat(i,i)
|
|
|
|
end do
|
|
|
|
end if
|
|
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
|
|
|
|
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
|
|
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
|
|
|
! Eigenvectors/eigenvalues of the single-excitation matrix
|
|
|
|
END_DOC
|
|
|
|
if(nMonoEx+1.gt.n_det_max_full)then
|
|
|
|
if(bavard)then
|
|
|
|
print*,'Using the Davidson algorithm to diagonalize the SXmatrix'
|
|
|
|
endif
|
|
|
|
double precision, allocatable :: u_in(:,:),energies(:)
|
|
|
|
allocate(u_in(nMonoEx+1,n_states_diag),energies(n_guess_sx_mat))
|
|
|
|
call davidson_diag_sx_mat(n_guess_sx_mat, u_in, energies)
|
|
|
|
integer :: i,j
|
|
|
|
SXeigenvec = 0.d0
|
|
|
|
SXeigenval = 0.d0
|
|
|
|
do i = 1, n_guess_sx_mat
|
|
|
|
SXeigenval(i) = energies(i)
|
|
|
|
do j = 1, nMonoEx+1
|
|
|
|
SXeigenvec(j,i) = u_in(j,i)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
if(bavard)then
|
|
|
|
print*,'Diagonalize the SXmatrix with Jacobi'
|
|
|
|
endif
|
|
|
|
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
|
|
|
|
endif
|
|
|
|
if (bavard) then
|
|
|
|
write(6,*) ' SXdiag : lowest eigenvalues '
|
|
|
|
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
|
|
|
|
if(n_guess_sx_mat.gt.0)then
|
|
|
|
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
|
|
|
|
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
|
|
|
|
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
|
|
|
|
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
|
|
|
|
endif
|
|
|
|
write(6,*)
|
|
|
|
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
|
|
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [real*8, energy_improvement]
|
|
|
|
implicit none
|
|
|
|
if(state_following_casscf)then
|
|
|
|
energy_improvement = SXeigenval(best_vector_ovrlp_casscf)
|
|
|
|
else
|
|
|
|
energy_improvement = SXeigenval(1)
|
|
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ integer, best_vector_ovrlp_casscf ]
|
|
|
|
&BEGIN_PROVIDER [ double precision, best_overlap_casscf ]
|
|
|
|
implicit none
|
|
|
|
integer :: i
|
|
|
|
double precision :: c0
|
|
|
|
best_overlap_casscf = 0.D0
|
|
|
|
best_vector_ovrlp_casscf = -1000
|
|
|
|
do i=1,nMonoEx+1
|
|
|
|
if (SXeigenval(i).lt.0.D0) then
|
|
|
|
if (dabs(SXeigenvec(1,i)).gt.best_overlap_casscf) then
|
|
|
|
best_overlap_casscf=dabs(SXeigenvec(1,i))
|
|
|
|
best_vector_ovrlp_casscf = i
|
|
|
|
end if
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
if(best_vector_ovrlp_casscf.lt.0)then
|
|
|
|
best_vector_ovrlp_casscf = minloc(SXeigenval,nMonoEx+1)
|
|
|
|
endif
|
|
|
|
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
|
|
|
|
if (bavard) then
|
|
|
|
write(6,*) ' SXdiag : eigenvalue for best overlap with '
|
|
|
|
write(6,*) ' previous orbitals = ',SXeigenval(best_vector_ovrlp_casscf)
|
|
|
|
write(6,*) ' weight of the 1st element ',c0
|
|
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, SXvector, (nMonoEx+1)]
|
|
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
|
|
|
! Best eigenvector of the single-excitation matrix
|
|
|
|
END_DOC
|
|
|
|
integer :: i
|
|
|
|
double precision :: c0
|
|
|
|
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
|
|
|
|
do i=1,nMonoEx+1
|
|
|
|
SXvector(i)=SXeigenvec(i,best_vector_ovrlp_casscf)/c0
|
|
|
|
end do
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, NewOrbs, (ao_num,mo_num) ]
|
|
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
|
|
|
! Updated orbitals
|
|
|
|
END_DOC
|
|
|
|
integer :: i,j,ialph
|
|
|
|
|
|
|
|
if(state_following_casscf)then
|
|
|
|
print*,'Using the state following casscf '
|
|
|
|
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
|
|
|
NatOrbsFCI, size(NatOrbsFCI,1), &
|
|
|
|
Umat, size(Umat,1), 0.d0, &
|
|
|
|
NewOrbs, size(NewOrbs,1))
|
|
|
|
|
|
|
|
level_shift_casscf *= 0.5D0
|
|
|
|
level_shift_casscf = max(level_shift_casscf,0.002d0)
|
|
|
|
!touch level_shift_casscf
|
|
|
|
else
|
|
|
|
if(best_vector_ovrlp_casscf.ne.1.and.n_orb_swap.ne.0)then
|
|
|
|
print*,'Taking the lowest root for the CASSCF'
|
|
|
|
print*,'!!! SWAPPING MOS !!!!!!'
|
|
|
|
level_shift_casscf *= 2.D0
|
|
|
|
level_shift_casscf = min(level_shift_casscf,0.5d0)
|
|
|
|
print*,'level_shift_casscf = ',level_shift_casscf
|
|
|
|
NewOrbs = switch_mo_coef
|
|
|
|
!mo_coef = switch_mo_coef
|
|
|
|
!soft_touch mo_coef
|
|
|
|
!call save_mos_no_occ
|
|
|
|
!stop
|
|
|
|
else
|
|
|
|
level_shift_casscf *= 0.5D0
|
|
|
|
level_shift_casscf = max(level_shift_casscf,0.002d0)
|
|
|
|
!touch level_shift_casscf
|
|
|
|
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
|
|
|
NatOrbsFCI, size(NatOrbsFCI,1), &
|
|
|
|
Umat, size(Umat,1), 0.d0, &
|
|
|
|
NewOrbs, size(NewOrbs,1))
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
|
|
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
|
|
|
! Orbital rotation matrix
|
|
|
|
END_DOC
|
|
|
|
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
|
|
|
|
logical :: converged
|
|
|
|
|
|
|
|
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
|
|
|
|
real*8 :: Tmat(mo_num,mo_num)
|
|
|
|
real*8 :: f
|
|
|
|
|
|
|
|
! the orbital rotation matrix T
|
|
|
|
Tmat(:,:)=0.D0
|
|
|
|
indx=1
|
|
|
|
do i=1,n_core_inact_orb
|
|
|
|
ii=list_core_inact(i)
|
|
|
|
do t=1,n_act_orb
|
|
|
|
tt=list_act(t)
|
|
|
|
indx+=1
|
|
|
|
Tmat(ii,tt)= SXvector(indx)
|
|
|
|
Tmat(tt,ii)=-SXvector(indx)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
do i=1,n_core_inact_orb
|
|
|
|
ii=list_core_inact(i)
|
|
|
|
do a=1,n_virt_orb
|
|
|
|
aa=list_virt(a)
|
|
|
|
indx+=1
|
|
|
|
Tmat(ii,aa)= SXvector(indx)
|
|
|
|
Tmat(aa,ii)=-SXvector(indx)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
do t=1,n_act_orb
|
|
|
|
tt=list_act(t)
|
|
|
|
do a=1,n_virt_orb
|
|
|
|
aa=list_virt(a)
|
|
|
|
indx+=1
|
|
|
|
Tmat(tt,aa)= SXvector(indx)
|
|
|
|
Tmat(aa,tt)=-SXvector(indx)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
|
|
|
|
! Form the exponential
|
2024-02-18 15:12:39 +01:00
|
|
|
call exp_matrix_taylor(Tmat,mo_num,Umat,converged)
|
2023-06-18 21:42:40 +02:00
|
|
|
|
2024-02-18 15:12:39 +01:00
|
|
|
! Tpotmat(:,:)=0.D0
|
|
|
|
! Umat(:,:) =0.D0
|
|
|
|
! do i=1,mo_num
|
|
|
|
! Tpotmat(i,i)=1.D0
|
|
|
|
! Umat(i,i) =1.d0
|
|
|
|
! end do
|
|
|
|
! iter=0
|
|
|
|
! converged=.false.
|
|
|
|
! do while (.not.converged)
|
|
|
|
! iter+=1
|
|
|
|
! f = 1.d0 / dble(iter)
|
|
|
|
! Tpotmat2(:,:) = Tpotmat(:,:) * f
|
|
|
|
! call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
|
|
|
|
! Tpotmat2, size(Tpotmat2,1), &
|
|
|
|
! Tmat, size(Tmat,1), 0.d0, &
|
|
|
|
! Tpotmat, size(Tpotmat,1))
|
|
|
|
! Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
|
|
|
|
!
|
|
|
|
! converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
|
|
|
|
! end do
|
2023-06-18 21:42:40 +02:00
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
|
|
|
|
|