9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-14 01:13:38 +01:00
qp2/src/dft_one_e/sr_coulomb.irp.f

75 lines
2.8 KiB
Fortran
Raw Normal View History

2019-01-25 11:39:31 +01:00
BEGIN_PROVIDER [double precision, short_range_Hartree_operator, (mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, short_range_Hartree, (N_states)]
implicit none
BEGIN_DOC
! short_range_Hartree_operator(i,j) = $\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}$
!
! short_range_Hartree = $1/2 \sum_{i,j} \rho_{ij} \mathtt{short_range_Hartree_operator}(i,j)$
!
! = $1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}$
END_DOC
integer :: i,j,k,l,m,n,istate
double precision :: get_two_e_integral,get_mo_two_e_integral_erf
double precision :: integral, integral_erf, contrib
double precision :: integrals_array(mo_num,mo_num),integrals_erf_array(mo_num,mo_num)
short_range_Hartree_operator = 0.d0
short_range_Hartree = 0.d0
do i = 1, mo_num
do j = 1, mo_num
if(dabs(one_e_dm_average_mo_for_dft(j,i)).le.1.d-12)cycle
call get_mo_two_e_integrals_i1j1(i,j,mo_num,integrals_array,mo_integrals_map)
call get_mo_two_e_integrals_erf_i1j1(i,j,mo_num,integrals_erf_array,mo_integrals_erf_map)
do istate = 1, N_states
do k = 1, mo_num
do l = 1, mo_num
integral = integrals_array(l,k)
integral_erf = integrals_erf_array(l,k)
contrib = one_e_dm_mo_for_dft(i,j,istate) * (integral - integral_erf)
short_range_Hartree_operator(l,k,istate) += contrib
short_range_Hartree(istate) += contrib * one_e_dm_mo_for_dft(k,l,istate)
enddo
enddo
enddo
enddo
enddo
short_range_Hartree = short_range_Hartree * 0.5d0
print*, 'short_range_Hartree',short_range_Hartree
END_PROVIDER
2019-05-31 17:36:16 +02:00
BEGIN_PROVIDER [double precision, regular_range_Hartree_operator, (mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, regular_range_Hartree, (N_states)]
implicit none
BEGIN_DOC
! regular_range_Hartree_operator(i,j) = $\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}$
!
! regular_range_Hartree = $1/2 \sum_{i,j} \rho_{ij} \mathtt{regular_range_Hartree_operator}(i,j)$
!
! = $1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}$
END_DOC
integer :: i,j,k,l,m,n,istate
double precision :: get_two_e_integral
double precision :: integral, contrib
double precision :: integrals_array(mo_num,mo_num)
regular_range_Hartree_operator = 0.d0
regular_range_Hartree = 0.d0
do i = 1, mo_num
do j = 1, mo_num
if(dabs(one_e_dm_average_mo_for_dft(j,i)).le.1.d-12)cycle
call get_mo_two_e_integrals_i1j1(i,j,mo_num,integrals_array,mo_integrals_map)
do istate = 1, N_states
do k = 1, mo_num
do l = 1, mo_num
integral = integrals_array(l,k)
contrib = one_e_dm_mo_for_dft(i,j,istate) * integral
regular_range_Hartree_operator(l,k,istate) += contrib
regular_range_Hartree(istate) += contrib * one_e_dm_mo_for_dft(k,l,istate)
enddo
enddo
enddo
enddo
enddo
regular_range_Hartree = regular_range_Hartree * 0.5d0
print*, 'regular_range_Hartree',regular_range_Hartree
END_PROVIDER