2019-01-25 11:39:31 +01:00
|
|
|
program fcidump
|
|
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
2019-01-29 23:10:00 +01:00
|
|
|
! Produce a regular `FCIDUMP` file from the |MOs| stored in the |EZFIO|
|
|
|
|
! directory.
|
2019-01-25 11:39:31 +01:00
|
|
|
!
|
2019-01-29 23:10:00 +01:00
|
|
|
! To specify an active space, the class of the |MOs| have to set in the
|
|
|
|
! |EZFIO| directory (see :ref:`qp_set_mo_class`).
|
2019-01-25 11:39:31 +01:00
|
|
|
!
|
2019-01-29 23:10:00 +01:00
|
|
|
! The :ref:`fcidump` program supports 3 types of |MO| classes :
|
2019-01-25 11:39:31 +01:00
|
|
|
!
|
2019-01-29 23:10:00 +01:00
|
|
|
! * the *core* orbitals which are always doubly occupied in the
|
|
|
|
! calculation
|
2019-01-25 11:39:31 +01:00
|
|
|
!
|
2019-01-29 23:10:00 +01:00
|
|
|
! * the *deleted* orbitals that are never occupied in the calculation
|
|
|
|
!
|
|
|
|
! * the *active* orbitals that are occupied with a varying number of
|
|
|
|
! electrons
|
2019-01-25 11:39:31 +01:00
|
|
|
!
|
|
|
|
END_DOC
|
|
|
|
character*(128) :: output
|
|
|
|
integer :: i_unit_output,getUnitAndOpen
|
|
|
|
output=trim(ezfio_filename)//'.FCIDUMP'
|
|
|
|
i_unit_output = getUnitAndOpen(output,'w')
|
|
|
|
|
|
|
|
integer :: i,j,k,l
|
|
|
|
integer :: i1,j1,k1,l1
|
|
|
|
integer :: i2,j2,k2,l2
|
|
|
|
integer*8 :: m
|
|
|
|
character*(2), allocatable :: A(:)
|
|
|
|
|
|
|
|
write(i_unit_output,*) '&FCI NORB=', n_act_orb, ', NELEC=', elec_num-n_core_orb*2, &
|
|
|
|
', MS2=', (elec_alpha_num-elec_beta_num), ','
|
|
|
|
allocate (A(n_act_orb))
|
|
|
|
A = '1,'
|
|
|
|
write(i_unit_output,*) 'ORBSYM=', (A(i), i=1,n_act_orb)
|
|
|
|
write(i_unit_output,*) 'ISYM=0,'
|
|
|
|
write(i_unit_output,*) '/'
|
|
|
|
deallocate(A)
|
|
|
|
|
|
|
|
integer(key_kind), allocatable :: keys(:)
|
|
|
|
double precision, allocatable :: values(:)
|
|
|
|
integer(cache_map_size_kind) :: n_elements, n_elements_max
|
|
|
|
PROVIDE mo_two_e_integrals_in_map
|
|
|
|
|
|
|
|
double precision :: get_two_e_integral, integral
|
|
|
|
|
|
|
|
do l=1,n_act_orb
|
|
|
|
l1 = list_act(l)
|
|
|
|
do k=1,n_act_orb
|
|
|
|
k1 = list_act(k)
|
|
|
|
do j=l,n_act_orb
|
|
|
|
j1 = list_act(j)
|
|
|
|
do i=k,n_act_orb
|
|
|
|
i1 = list_act(i)
|
|
|
|
if (i1>=j1) then
|
|
|
|
integral = get_two_e_integral(i1,j1,k1,l1,mo_integrals_map)
|
|
|
|
if (dabs(integral) > mo_integrals_threshold) then
|
|
|
|
write(i_unit_output,*) integral, i,k,j,l
|
|
|
|
endif
|
|
|
|
end if
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
do j=1,n_act_orb
|
|
|
|
j1 = list_act(j)
|
|
|
|
do i=j,n_act_orb
|
|
|
|
i1 = list_act(i)
|
|
|
|
integral = mo_one_e_integrals(i1,j1) + core_fock_operator(i1,j1)
|
|
|
|
if (dabs(integral) > mo_integrals_threshold) then
|
|
|
|
write(i_unit_output,*) integral, i,j,0,0
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
write(i_unit_output,*) core_energy, 0, 0, 0, 0
|
|
|
|
end
|