qmcchem/src/SAMPLING/dmc_step.irp.f

354 lines
9.1 KiB
Fortran

! Providers of *_dmc_block_walk
!==============================
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
BEGIN_PROVIDER [ $T, $X_dmc_block_walk $D1 ]
&BEGIN_PROVIDER [ $T, $X_dmc_block_walk_kahan $D2 ]
&BEGIN_PROVIDER [ $T, $X_2_dmc_block_walk $D1 ]
&BEGIN_PROVIDER [ $T, $X_2_dmc_block_walk_kahan $D2 ]
implicit none
BEGIN_DOC
! DMC averages of $X. Computed in E_loc_dmc_block_walk
END_DOC
$X_dmc_block_walk = 0.d0
$X_dmc_block_walk_kahan = 0.d0
$X_2_dmc_block_walk = 0.d0
$X_2_dmc_block_walk_kahan = 0.d0
END_PROVIDER
"""
for p in properties:
if p[1] != 'e_loc':
if p[2] == "":
D1 = ""
D2 = ", (3)"
else:
D1 = ", ("+p[2][1:-1]+")"
D2 = ", ("+p[2][1:-1]+",3)"
print t.replace("$X",p[1]).replace("$T",p[0]).replace("$D1",D1).replace("$D2",D2)
END_SHELL
BEGIN_PROVIDER [ double precision, E_loc_dmc_block_walk ]
&BEGIN_PROVIDER [ double precision, E_loc_2_dmc_block_walk ]
&BEGIN_PROVIDER [ double precision, E_loc_dmc_block_walk_kahan, (3) ]
&BEGIN_PROVIDER [ double precision, E_loc_2_dmc_block_walk_kahan, (3) ]
implicit none
include '../types.F'
BEGIN_DOC
! Properties averaged over the block using the DMC method
END_DOC
real, allocatable :: elec_coord_tmp(:,:,:)
integer :: mod_align
double precision :: E_loc_save(walk_num_dmc_max)
double precision :: E_loc_save_tmp(walk_num_dmc_max)
double precision :: psi_value_save(walk_num_dmc_max)
double precision :: psi_value_save_tmp(walk_num_dmc_max)
double precision :: dmc_weight(walk_num_dmc_max)
integer :: trapped_walk_tmp(walk_num_dmc_max)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: E_loc_save
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: E_loc_save_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dmc_weight
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save_tmp
allocate ( elec_coord_tmp(mod_align(elec_num+1),3,walk_num_dmc_max) )
psi_value_save = 0.d0
psi_value_save_tmp = 0.d0
dmc_weight = 1.d0
! Initialization
if (vmc_algo /= t_Brownian) then
call abrt(irp_here,'DMC should run with Brownian algorithm')
endif
integer :: k, i_walk, i_step
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
if (calc_$X) then
!DIR$ VECTOR ALIGNED
$X_dmc_block_walk = 0.d0
!DIR$ VECTOR ALIGNED
$X_dmc_block_walk_kahan = 0.d0
!DIR$ VECTOR ALIGNED
$X_2_dmc_block_walk = 0.d0
!DIR$ VECTOR ALIGNED
$X_2_dmc_block_walk_kahan = 0.d0
endif
"""
for p in properties:
print t.replace("$X",p[1])
END_SHELL
logical :: loop
integer*8 :: cpu0, cpu1, cpu2, count_rate, count_max
loop = .True.
call system_clock(cpu0, count_rate, count_max)
cpu2 = cpu0
block_weight = 0.d0
real, external :: accep_rate
double precision :: delta, thr, E0
thr = 2.d0/time_step_sq
E0 = E_ref
do while (loop)
! Every walker makes a step
do i_walk=1,walk_num_dmc
integer :: i,j,l
do l=1,3
do i=1,elec_num+1
elec_coord(i,l) = elec_coord_full_dmc(i,l,i_walk)
enddo
enddo
TOUCH elec_coord
double precision :: p,q
real :: delta_x
logical :: accepted
call brownian_step(p,q,accepted,delta_x)
if (accepted) then
trapped_walk(i_walk) = 0
else
trapped_walk(i_walk) += 1
endif
if ( (trapped_walk(i_walk) < trapped_walk_max).and. &
(psi_value * psi_value_save(i_walk) >= 0.d0) ) then
delta = ((E_loc+E_loc_save(i_walk))*0.5d0 - E0) * p
if ( delta > thr ) then
dmc_weight(i_walk) = dexp(-dtime_step*thr)
else if ( delta < -thr ) then
dmc_weight(i_walk) = dexp(dtime_step*thr)
else
dmc_weight(i_walk) = dexp(-dtime_step*delta)
endif
else
dmc_weight(i_walk) = 0.d0
trapped_walk(i_walk) = 0
endif
elec_coord(elec_num+1,1) += p*time_step
elec_coord(elec_num+1,2) = E_loc
elec_coord(elec_num+1,3) = dmc_weight(i_walk)
do l=1,3
do i=1,elec_num+1
elec_coord_full_dmc(i,l,i_walk) = elec_coord(i,l)
enddo
enddo
psi_value_save(i_walk) = psi_value
E_loc_save(i_walk) = E_loc
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
if (calc_$X) then
! Kahan's summation algorithm to compute these sums reducing the rounding error:
! $X_dmc_block_walk += $X * dmc_weight(i_walk)
! $X_2_dmc_block_walk += $X_2 * dmc_weight(i_walk)
! see http://en.wikipedia.org/wiki/Kahan_summation_algorithm
$X_dmc_block_walk_kahan($D2 3) = $X * dmc_weight(i_walk) - $X_dmc_block_walk_kahan($D2 1)
$X_dmc_block_walk_kahan($D2 2) = $X_dmc_block_walk $D1 + $X_dmc_block_walk_kahan($D2 3)
$X_dmc_block_walk_kahan($D2 1) = ($X_dmc_block_walk_kahan($D2 2) - $X_dmc_block_walk $D1 ) &
- $X_dmc_block_walk_kahan($D2 3)
$X_dmc_block_walk $D1 = $X_dmc_block_walk_kahan($D2 2)
$X_2_dmc_block_walk_kahan($D2 3) = $X_2 * dmc_weight(i_walk) - $X_2_dmc_block_walk_kahan($D2 1)
$X_2_dmc_block_walk_kahan($D2 2) = $X_2_dmc_block_walk $D1 + $X_2_dmc_block_walk_kahan($D2 3)
$X_2_dmc_block_walk_kahan($D2 1) = ($X_2_dmc_block_walk_kahan($D2 2) - $X_2_dmc_block_walk $D1 ) &
- $X_2_dmc_block_walk_kahan($D2 3)
$X_2_dmc_block_walk $D1 = $X_2_dmc_block_walk_kahan($D2 2)
endif
"""
for p in properties:
if p[2] == "":
D1 = ""
D2 = ""
else:
D1 = "("+":"*(p[2].count(',')+1)+")"
D2 = ":"*(p[2].count(',')+1)+","
print t.replace("$X",p[1]).replace("$D1",D1).replace("$D2",D2)
END_SHELL
block_weight += dmc_weight(i_walk)
enddo
! Population control
double precision :: sum_weight
sum_weight = 0.d0
do k=1,walk_num_dmc
sum_weight += dmc_weight(k)
enddo
E0 = E_ref - log(sum_weight/real(walk_num)) * 0.1d0 /dtime_step
! Branching
integer :: ipos(walk_num_dmc_max), walk_num_dmc_new
double precision, external :: qmc_ranf
double precision :: r
do k=1,walk_num_dmc
do l=1,3
do i=1,elec_num+1
elec_coord_tmp(i,l,k) = elec_coord_full_dmc(i,l,k)
enddo
enddo
psi_value_save_tmp(k) = psi_value_save(k)
E_loc_save_tmp(k) = E_loc_save(k)
trapped_walk_tmp(k) = trapped_walk(k)
ipos(k) = k
enddo
walk_num_dmc_new = walk_num_dmc
do k=1,walk_num_dmc
r = qmc_ranf()
if (dmc_weight(k) > 1.d0) then
if ( 1.d0+r < dmc_weight(k) ) then
walk_num_dmc_new = walk_num_dmc_new+1
ipos(walk_num_dmc_new) = k
endif
else
if ( r > dmc_weight(k) ) then
ipos(k) = ipos(walk_num_dmc_new)
walk_num_dmc_new = walk_num_dmc_new-1
endif
endif
enddo
walk_num_dmc = walk_num_dmc_new
integer :: ipm
do k=1,walk_num_dmc
ipm = ipos(k)
do l=1,3
do i=1,elec_num+1
elec_coord_full_dmc(i,l,k) = elec_coord_tmp(i,l,ipm)
enddo
enddo
E_loc_save(k) = E_loc_save_tmp(ipm)
psi_value_save(k) = psi_value_save_tmp(ipm)
trapped_walk(k) = trapped_walk_tmp(ipm)
enddo
call system_clock(cpu1, count_rate, count_max)
if (cpu1 < cpu0) then
cpu1 = cpu1+cpu0
endif
loop = dble(cpu1-cpu0)*dble(walk_num)/dble(count_rate) < block_time
if (cpu1-cpu2 > count_rate) then
integer :: do_run
call get_running(do_run)
loop = loop.and.(do_run == t_Running)
cpu2 = cpu1
endif
SOFT_TOUCH elec_coord_full_dmc psi_value psi_grad_psi_inv_x psi_grad_psi_inv_y psi_grad_psi_inv_z elec_coord
enddo
double precision :: factor
factor = 1.d0/block_weight
SOFT_TOUCH block_weight
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
if (calc_$X) then
$X_dmc_block_walk *= factor
$X_2_dmc_block_walk *= factor
endif
"""
for p in properties:
print t.replace("$X",p[1])
END_SHELL
deallocate ( elec_coord_tmp )
do k=1,min(walk_num,walk_num_dmc)
do l=1,3
do i=1,elec_num+1
elec_coord_full(i,l,k) = elec_coord_full_dmc(i,l,k)
enddo
enddo
enddo
do k=walk_num_dmc+1,walk_num
do l=1,3
do i=1,elec_num+1
elec_coord_full(i,l,k) = elec_coord_full_dmc(i,l,mod(k,walk_num_dmc)+1)
enddo
enddo
enddo
SOFT_TOUCH elec_coord_full
END_PROVIDER
BEGIN_PROVIDER [ double precision, E_ref ]
implicit none
BEGIN_DOC
! Weight of the DMC population
END_DOC
E_ref = 0.d0
call get_simulation_E_ref(E_ref)
END_PROVIDER
BEGIN_PROVIDER [ integer, trapped_walk, (walk_num_dmc_max) ]
&BEGIN_PROVIDER [ integer, trapped_walk_max ]
implicit none
BEGIN_DOC
! Number of steps when the walkers were trapped
END_DOC
trapped_walk = 0
trapped_walk_max = 20
END_PROVIDER
BEGIN_PROVIDER [ integer, walk_num_dmc ]
implicit none
BEGIN_DOC
! Current number of walkers in DMC
END_DOC
walk_num_dmc = walk_num
END_PROVIDER
BEGIN_PROVIDER [ integer, walk_num_dmc_max ]
implicit none
BEGIN_DOC
! Max number of walkers in DMC
END_DOC
walk_num_dmc_max = max(3 * walk_num, 30)
END_PROVIDER
BEGIN_PROVIDER [ real, elec_coord_full_dmc, (elec_num+1,3,walk_num_dmc_max)]
implicit none
BEGIN_DOC
! DMC population
END_DOC
integer :: i,k,l
do k=1,walk_num
do l=1,3
do i=1,elec_num+1
elec_coord_full_dmc(i,l,k) = elec_coord_full(i,l,k)
enddo
enddo
enddo
END_PROVIDER