qmcchem/src/JASTROW/jastrow_mu.irp.f

121 lines
3.2 KiB
Fortran

! Mu Jastrow
! --------------
BEGIN_PROVIDER [ double precision , jast_elec_Mu_value, (elec_num_8) ]
implicit none
BEGIN_DOC
! J(i) = \sum_j a.rij/(1+b^2.rij) - \sum_A (a.riA/(1+a.riA))^2
END_DOC
integer :: i,j
double precision :: a, b, rij, tmp
include '../constants.F'
double precision :: mu
mu = mu_erf
do i=1,elec_num
jast_elec_Mu_value(i) = 0.d0
enddo
do j=1,elec_num
!DIR$ LOOP COUNT (50)
do i=1,elec_num
if(j==i)cycle
rij = elec_dist(i,j)
tmp = 0.5d0 * rij * (1.d0 - derf(mu*rij)) - 0.5d0/(dsqpi*mu) * dexp(-mu*mu*rij*rij)
jast_elec_Mu_value(i) += tmp
enddo
enddo
jast_elec_Mu_value = jast_elec_Mu_value * 0.5d0 ! symmetrization
END_PROVIDER
BEGIN_PROVIDER [ double precision , jast_elec_Mu_grad_x, (elec_num_8) ]
&BEGIN_PROVIDER [ double precision , jast_elec_Mu_grad_y, (elec_num_8) ]
&BEGIN_PROVIDER [ double precision , jast_elec_Mu_grad_z, (elec_num_8) ]
implicit none
BEGIN_DOC
! Gradient of the Jastrow factor
END_DOC
integer :: i,j
double precision :: a, b, rij, tmp, x, y, z
include '../constants.F'
double precision :: mu
mu = mu_erf
do i=1,elec_num
jast_elec_Mu_grad_x(i) = 0.d0
jast_elec_Mu_grad_y(i) = 0.d0
jast_elec_Mu_grad_z(i) = 0.d0
!DIR$ LOOP COUNT (100)
enddo
! (grad of J(r12) with respect to xi, yi, zi)
do i = 1, elec_num
do j = 1, elec_num
if(i==j)cycle
rij = elec_dist(j,i)
jast_elec_Mu_grad_x(i) += 0.5d0 * ( 1.d0 - derf(mu * rij) ) * elec_dist_inv(j,i) * (-1.d0) * elec_dist_vec_x(j,i)
jast_elec_Mu_grad_y(i) += 0.5d0 * ( 1.d0 - derf(mu * rij) ) * elec_dist_inv(j,i) * (-1.d0) * elec_dist_vec_y(j,i)
jast_elec_Mu_grad_z(i) += 0.5d0 * ( 1.d0 - derf(mu * rij) ) * elec_dist_inv(j,i) * (-1.d0) * elec_dist_vec_z(j,i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision , jast_elec_Mu_lapl, (elec_num_8) ]
implicit none
BEGIN_DOC
! Laplacian of the Jastrow factor
END_DOC
integer :: i,j
double precision :: a, b, rij, tmp, x, y, z
include '../constants.F'
double precision :: mu, x_ij, y_ij, z_ij, rij_inv
mu = mu_erf
do i=1,elec_num
jast_elec_Mu_lapl(i) = 0.d0
enddo
do i=1, elec_num
do j=1, elec_num
if(j==i)cycle
rij = elec_dist(j,i)
rij_inv = elec_dist_inv(j,i)
x_ij = elec_dist_vec_x(j,i)
y_ij = elec_dist_vec_y(j,i)
z_ij = elec_dist_vec_z(j,i)
jast_elec_Mu_lapl(i) += (1.d0 - derf(mu*rij))*elec_dist_inv(j,i) - mu/dsqpi * dexp(-mu*mu*rij*rij)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, mu_erf ]
implicit none
mu_erf = 0.5d0
END_PROVIDER
BEGIN_PROVIDER [double precision, grad_j_mu_x,(elec_num, elec_num)]
&BEGIN_PROVIDER [double precision, grad_j_mu_y,(elec_num, elec_num)]
&BEGIN_PROVIDER [double precision, grad_j_mu_z,(elec_num, elec_num)]
implicit none
integer :: i,j
double precision :: rij, mu,scal
mu = mu_erf
grad_j_mu_x = 0.d0
grad_j_mu_y = 0.d0
grad_j_mu_z = 0.d0
do j = 1, elec_num
do i = 1, elec_num
if(i==j)cycle
rij = elec_dist(i,j)
scal = 0.5d0 * ( 1.d0 - derf(mu * rij) ) * elec_dist_inv(i,j)
grad_j_mu_x(i,j) = (elec_coord_transp(1,i) - elec_coord_transp(1,j)) * scal
grad_j_mu_y(i,j) = (elec_coord_transp(2,i) - elec_coord_transp(2,j)) * scal
grad_j_mu_z(i,j) = (elec_coord_transp(3,i) - elec_coord_transp(3,j)) * scal
enddo
enddo
END_PROVIDER