qmcchem/src/nuclei.irp.f

152 lines
3.6 KiB
Fortran

BEGIN_PROVIDER [ integer, nucl_num ]
&BEGIN_PROVIDER [ integer, nucl_num_8 ]
implicit none
BEGIN_DOC
! Number of nuclei
END_DOC
nucl_num = -1
call get_nuclei_nucl_num(nucl_num)
if (nucl_num <= 0) then
call abrt(irp_here,'Number of nuclei should be > 0')
endif
integer, external :: mod_align
nucl_num_8 = mod_align(nucl_num)
END_PROVIDER
BEGIN_PROVIDER [ real, nucl_charge, (nucl_num) ]
implicit none
BEGIN_DOC
! Nuclear charge
END_DOC
nucl_charge = -1.d0
call get_nuclei_nucl_charge(nucl_charge)
integer :: i
do i=1,nucl_num
if (nucl_charge(i) < 0.) then
call abrt(irp_here,'Nuclear charges should be > 0')
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, nucl_coord, (nucl_num_8,3) ]
implicit none
BEGIN_DOC
! Nuclear coordinates
END_DOC
nucl_coord = 0.
real, allocatable :: buffer(:,:)
allocate (buffer(nucl_num,3))
buffer = 0.
call get_nuclei_nucl_coord(buffer)
integer :: i,j
do i=1,3
do j=1,nucl_num
nucl_coord(j,i) = buffer(j,i)
enddo
enddo
deallocate(buffer)
END_PROVIDER
BEGIN_PROVIDER [ real, nucl_coord_transp, (8,nucl_num)
implicit none
BEGIN_DOC
! Transposed array of nucl_coord
END_DOC
integer :: i, k
integer, save :: ifirst = 0
if (ifirst == 0) then
ifirst = 1
nucl_coord_transp = 0.
endif
!DIR$ VECTOR ALIGNED
do i=1,nucl_num
nucl_coord_transp(1,i) = nucl_coord(i,1)
nucl_coord_transp(2,i) = nucl_coord(i,2)
nucl_coord_transp(3,i) = nucl_coord(i,3)
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, nucl_dist, (nucl_num_8,nucl_num) ]
&BEGIN_PROVIDER [ real, nucl_dist_vec_x, (nucl_num_8,nucl_num) ]
&BEGIN_PROVIDER [ real, nucl_dist_vec_y, (nucl_num_8,nucl_num) ]
&BEGIN_PROVIDER [ real, nucl_dist_vec_z, (nucl_num_8,nucl_num) ]
implicit none
BEGIN_DOC
! nucl_dist : Nucleus-nucleus distances : nucl_dist(i,j) = |R_i-R_j|
! nucl_dist_vec : Nucleus-nucleus distances vectors
END_DOC
integer :: ie1, ie2, l
integer,save :: ifirst = 0
if (ifirst == 0) then
ifirst = 1
nucl_dist = 0.
nucl_dist_vec_x = 0.
nucl_dist_vec_y = 0.
nucl_dist_vec_z = 0.
endif
do ie2 = 1,nucl_num
!DIR$ VECTOR ALIGNED
!DIR$ LOOP COUNT (100)
do ie1 = 1,nucl_num
nucl_dist_vec_x(ie1,ie2) = nucl_coord(ie1,1) - nucl_coord(ie2,1)
nucl_dist_vec_y(ie1,ie2) = nucl_coord(ie1,2) - nucl_coord(ie2,2)
nucl_dist_vec_z(ie1,ie2) = nucl_coord(ie1,3) - nucl_coord(ie2,3)
enddo
!DIR$ VECTOR ALIGNED
!DIR$ LOOP COUNT (100)
do ie1 = 1,nucl_num
nucl_dist (ie1,ie2) = nucl_dist_vec_x(ie1,ie2)*nucl_dist_vec_x(ie1,ie2) +&
nucl_dist_vec_y(ie1,ie2)*nucl_dist_vec_y(ie1,ie2) + &
nucl_dist_vec_z(ie1,ie2)*nucl_dist_vec_z(ie1,ie2)
nucl_dist(ie1,ie2) = sqrt(nucl_dist (ie1,ie2))
ASSERT (nucl_dist(ie1,ie2) > 0.)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, nucl_fitcusp_radius, (nucl_num) ]
implicit none
BEGIN_DOC
! Distance threshold for the fit
END_DOC
real :: def(nucl_num), factor
integer :: k
real, parameter :: a = 1.74891
real, parameter :: b = 0.126057
if (.not. do_nucl_fitcusp) then
nucl_fitcusp_radius = 0.d0
return
endif
do k=1,nucl_num
nucl_fitcusp_radius(k) = nucl_fitcusp_factor/(a*nucl_charge(k)+b)
enddo
! Avoid dummy atoms
do k=1,nucl_num
if (nucl_charge(k) < 5.d-1) then
nucl_fitcusp_radius(k) = 0.
endif
enddo
END_PROVIDER