! Providers of *_dmc_block_walk !============================== BEGIN_SHELL [ /usr/bin/python ] from properties import * t = """ BEGIN_PROVIDER [ $T, $X_dmc_block_walk $D1 ] &BEGIN_PROVIDER [ $T, $X_dmc_block_walk_kahan $D2 ] &BEGIN_PROVIDER [ $T, $X_2_dmc_block_walk $D1 ] &BEGIN_PROVIDER [ $T, $X_2_dmc_block_walk_kahan $D2 ] implicit none BEGIN_DOC ! DMC averages of $X. Computed in E_loc_dmc_block_walk END_DOC $X_dmc_block_walk = 0.d0 $X_dmc_block_walk_kahan = 0.d0 $X_2_dmc_block_walk = 0.d0 $X_2_dmc_block_walk_kahan = 0.d0 END_PROVIDER """ for p in properties: if p[1] != 'e_loc': if p[2] == "": D1 = "" D2 = ", (3)" else: D1 = ", ("+p[2][1:-1]+")" D2 = ", ("+p[2][1:-1]+",3)" print t.replace("$X",p[1]).replace("$T",p[0]).replace("$D1",D1).replace("$D2",D2) END_SHELL BEGIN_PROVIDER [ double precision, E_loc_dmc_block_walk ] &BEGIN_PROVIDER [ double precision, E_loc_2_dmc_block_walk ] &BEGIN_PROVIDER [ double precision, E_loc_dmc_block_walk_kahan, (3) ] &BEGIN_PROVIDER [ double precision, E_loc_2_dmc_block_walk_kahan, (3) ] implicit none include '../types.F' BEGIN_DOC ! Properties averaged over the block using the DMC method END_DOC real, allocatable :: elec_coord_tmp(:,:,:) integer :: mod_align double precision :: psi_value_save(walk_num) double precision :: psi_value_save_tmp(walk_num) integer :: trapped_walk_tmp(walk_num) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save_tmp allocate ( elec_coord_tmp(mod_align(elec_num+1),3,walk_num) ) psi_value_save = 0.d0 ! Initialization if (vmc_algo /= t_Brownian) then call abrt(irp_here,'DMC should run with Brownian algorithm') endif integer :: k, i_walk, i_step BEGIN_SHELL [ /usr/bin/python ] from properties import * t = """ if (calc_$X) then !DIR$ VECTOR ALIGNED $X_dmc_block_walk = 0.d0 !DIR$ VECTOR ALIGNED $X_dmc_block_walk_kahan = 0.d0 !DIR$ VECTOR ALIGNED $X_2_dmc_block_walk = 0.d0 !DIR$ VECTOR ALIGNED $X_2_dmc_block_walk_kahan = 0.d0 $X_min = huge(1.) $X_max =-huge(1.) endif """ for p in properties: print t.replace("$X",p[1]) END_SHELL logical :: loop integer*8 :: cpu0, cpu1, cpu2, count_rate, count_max loop = .True. call system_clock(cpu0, count_rate, count_max) cpu2 = cpu0 block_weight = 0.d0 do while (loop) ! Every walker makes a step do i_walk=1,walk_num integer :: i,j,l do l=1,3 do i=1,elec_num+1 elec_coord(i,l) = elec_coord_full(i,l,i_walk) enddo enddo TOUCH elec_coord BEGIN_SHELL [ /usr/bin/python ] from properties import * t = """ if (calc_$X) then ! Kahan's summation algorithm to compute these sums reducing the rounding error: ! $X_dmc_block_walk += $X * pop_weight_mult ! $X_2_dmc_block_walk += $X_2 * pop_weight_mult ! see http://en.wikipedia.org/wiki/Kahan_summation_algorithm $X_dmc_block_walk_kahan($D2 3) = $X * pop_weight_mult - $X_dmc_block_walk_kahan($D2 1) $X_dmc_block_walk_kahan($D2 2) = $X_dmc_block_walk $D1 + $X_dmc_block_walk_kahan($D2 3) $X_dmc_block_walk_kahan($D2 1) = ($X_dmc_block_walk_kahan($D2 2) - $X_dmc_block_walk $D1 ) & - $X_dmc_block_walk_kahan($D2 3) $X_dmc_block_walk $D1 = $X_dmc_block_walk_kahan($D2 2) $X_2_dmc_block_walk_kahan($D2 3) = $X_2 * pop_weight_mult - $X_2_dmc_block_walk_kahan($D2 1) $X_2_dmc_block_walk_kahan($D2 2) = $X_2_dmc_block_walk $D1 + $X_2_dmc_block_walk_kahan($D2 3) $X_2_dmc_block_walk_kahan($D2 1) = ($X_2_dmc_block_walk_kahan($D2 2) - $X_2_dmc_block_walk $D1 ) & - $X_2_dmc_block_walk_kahan($D2 3) $X_2_dmc_block_walk $D1 = $X_2_dmc_block_walk_kahan($D2 2) endif """ for p in properties: if p[2] == "": D1 = "" D2 = "" else: D1 = "("+":"*(p[2].count(',')+1)+")" D2 = ":"*(p[2].count(',')+1)+"," print t.replace("$X",p[1]).replace("$D1",D1).replace("$D2",D2) END_SHELL double precision :: p,q real :: delta_x logical :: accepted call brownian_step(p,q,accepted,delta_x) if (accepted) then trapped_walk(i_walk) = 0 else trapped_walk(i_walk) += 1 endif if ( (trapped_walk(i_walk) < trapped_walk_max).and. & (psi_value * psi_value_save(i_walk) >= 0.d0) ) then dmc_weight(i_walk) = dexp(dtime_step*(E_ref - E_loc)) else dmc_weight(i_walk) = 0.d0 trapped_walk(i_walk) = 0 endif elec_coord(elec_num+1,1) += p*time_step elec_coord(elec_num+1,2) = E_loc elec_coord(elec_num+1,3) = dmc_weight(i_walk) do l=1,3 do i=1,elec_num+1 elec_coord_full(i,l,i_walk) = elec_coord(i,l) enddo enddo psi_value_save(i_walk) = psi_value enddo ! Move to the next projection step if (dmc_projection > 0) then dmc_projection_step = mod(dmc_projection_step,dmc_projection)+1 else dmc_projection_step = 1 endif ! Eventually, recompute the weight of the population if (dmc_projection_step == 1) then pop_weight_mult = 1.d0 do k=1,dmc_projection pop_weight_mult *= pop_weight(k) enddo endif ! Remove contribution of the old value of the weight at the new ! projection step pop_weight_mult *= 1.d0/pop_weight(dmc_projection_step) ! Compute the new weight of the population double precision :: sum_weight sum_weight = 0.d0 do k=1,walk_num sum_weight += dmc_weight(k) enddo pop_weight(dmc_projection_step) = sum_weight/dble(walk_num) ! Update the running population weight pop_weight_mult *= pop_weight(dmc_projection_step) block_weight += pop_weight_mult * dble(walk_num) ! Reconfiguration integer :: ipos(walk_num) call reconfigure(ipos,dmc_weight) do k=1,walk_num do l=1,3 do i=1,elec_num+1 elec_coord_tmp(i,l,k) = elec_coord_full(i,l,k) enddo enddo psi_value_save_tmp(k) = psi_value_save(k) trapped_walk_tmp(k) = trapped_walk(k) enddo integer :: ipm do k=1,walk_num ipm = ipos(k) do l=1,3 do i=1,elec_num+1 elec_coord_full(i,l,k) = elec_coord_tmp(i,l,ipm) enddo enddo psi_value_save(k) = psi_value_save_tmp(ipm) trapped_walk(k) = trapped_walk_tmp(ipm) enddo call system_clock(cpu1, count_rate, count_max) if (cpu1 < cpu0) then cpu1 = cpu1+cpu0 endif loop = dble(cpu1-cpu0) < dble(block_time)*dble(count_rate) if (cpu1-cpu2 > count_rate) then integer :: do_run call get_running(do_run) loop = do_run == t_Running cpu2 = cpu1 endif SOFT_TOUCH elec_coord_full psi_value psi_grad_psi_inv_x psi_grad_psi_inv_y psi_grad_psi_inv_z elec_coord pop_weight_mult enddo double precision :: factor factor = 1.d0/block_weight SOFT_TOUCH block_weight BEGIN_SHELL [ /usr/bin/python ] from properties import * t = """ if (calc_$X) then $X_dmc_block_walk *= factor $X_2_dmc_block_walk *= factor endif """ for p in properties: print t.replace("$X",p[1]) END_SHELL deallocate ( elec_coord_tmp ) END_PROVIDER BEGIN_PROVIDER [ double precision, E_ref ] implicit none BEGIN_DOC ! Weight of the DMC population END_DOC E_ref = 0.d0 call get_simulation_E_ref(E_ref) END_PROVIDER BEGIN_PROVIDER [ double precision, pop_weight_mult ] implicit none BEGIN_DOC ! Population weight of DMC END_DOC pop_weight_mult = pop_weight(dmc_projection) END_PROVIDER BEGIN_PROVIDER [ integer, dmc_projection ] &BEGIN_PROVIDER [ integer, dmc_projection_step ] implicit none BEGIN_DOC ! Number of projection steps for SRMC END_DOC real :: dmc_projection_time dmc_projection_time = 1. call get_simulation_dmc_projection_time(dmc_projection_time) dmc_projection = int( dmc_projection_time/time_step) dmc_projection_step = 0 END_PROVIDER BEGIN_PROVIDER [ double precision, pop_weight, (0:dmc_projection+1) ] implicit none BEGIN_DOC ! Population weight of DMC END_DOC pop_weight = 1.d0 pop_weight(dmc_projection) = 1.d0/dble(size(pop_weight)) END_PROVIDER BEGIN_PROVIDER [ integer, trapped_walk, (walk_num_8) ] &BEGIN_PROVIDER [ integer, trapped_walk_max ] implicit none BEGIN_DOC ! Number of steps when the walkers were trapped END_DOC trapped_walk = 0 trapped_walk_max = 20 END_PROVIDER BEGIN_PROVIDER [ double precision, dmc_weight, (walk_num_8) ] implicit none BEGIN_DOC ! Weight of the walkers in the DMC algorithm: exp(-time_step*(E_loc-E_ref)) END_DOC !DIR$ VECTOR ALIGNED dmc_weight = 1.d0 END_PROVIDER