! Providers of *_srmc_block_walk !============================== BEGIN_SHELL [ /usr/bin/env python2 ] from properties import * t = """ BEGIN_PROVIDER [ $T, $X_srmc_block_walk $D1 ] &BEGIN_PROVIDER [ $T, $X_srmc_block_walk_kahan $D2 ] &BEGIN_PROVIDER [ $T, $X_2_srmc_block_walk $D1 ] &BEGIN_PROVIDER [ $T, $X_2_srmc_block_walk_kahan $D2 ] implicit none BEGIN_DOC ! SRMC averages of $X. Computed in E_loc_srmc_block_walk END_DOC $X_srmc_block_walk = 0.d0 $X_srmc_block_walk_kahan = 0.d0 $X_2_srmc_block_walk = 0.d0 $X_2_srmc_block_walk_kahan = 0.d0 END_PROVIDER """ for p in properties: if p[1] != 'e_loc': if p[2] == "": D1 = "" D2 = ", (3)" else: D1 = ", ("+p[2][1:-1]+")" D2 = ", ("+p[2][1:-1]+",3)" print t.replace("$X",p[1]).replace("$T",p[0]).replace("$D1",D1).replace("$D2",D2) END_SHELL BEGIN_PROVIDER [ double precision, E_loc_srmc_block_walk ] &BEGIN_PROVIDER [ double precision, E_loc_2_srmc_block_walk ] &BEGIN_PROVIDER [ double precision, E_loc_srmc_block_walk_kahan, (3) ] &BEGIN_PROVIDER [ double precision, E_loc_2_srmc_block_walk_kahan, (3) ] implicit none include '../types.F' BEGIN_DOC ! Properties averaged over the block using the SRMC method END_DOC real, allocatable :: elec_coord_tmp(:,:,:) integer :: mod_align double precision :: E_loc_save(4,walk_num_dmc_max) double precision :: E_loc_save_tmp(4,walk_num_dmc_max) double precision :: psi_value_save(walk_num) double precision :: psi_value_save_tmp(walk_num) double precision :: srmc_weight(walk_num) double precision :: block_weight_vmc double precision, allocatable :: psi_grad_psi_inv_save(:,:,:) double precision, allocatable :: psi_grad_psi_inv_save_tmp(:,:,:) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_grad_psi_inv_save !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_grad_psi_inv_save_tmp !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: E_loc_save !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: E_loc_save_tmp !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save_tmp !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: srmc_weight allocate ( psi_grad_psi_inv_save(elec_num_8,3,walk_num) , & psi_grad_psi_inv_save_tmp(elec_num_8,3,walk_num) , & elec_coord_tmp(mod_align(elec_num+1),3,walk_num) ) psi_value_save = 0.d0 psi_value_save_tmp = 0.d0 srmc_weight = 1.d0 ! Initialization if (vmc_algo /= t_Brownian) then call abrt(irp_here,'SRMC should run with Brownian algorithm') endif integer :: k, i_walk, i_step BEGIN_SHELL [ /usr/bin/env python2 ] from properties import * t = """ if (calc_$X) then !DIR$ VECTOR ALIGNED $X_srmc_block_walk = 0.d0 !DIR$ VECTOR ALIGNED $X_srmc_block_walk_kahan = 0.d0 !DIR$ VECTOR ALIGNED $X_2_srmc_block_walk = 0.d0 !DIR$ VECTOR ALIGNED $X_2_srmc_block_walk_kahan = 0.d0 endif """ for p in properties: print t.replace("$X",p[1]) END_SHELL logical :: loop integer*8 :: cpu0, cpu1, cpu2, count_rate, count_max loop = .True. call system_clock(cpu0, count_rate, count_max) cpu2 = cpu0 block_weight = 0.d0 block_weight_vmc = 0.d0 real, external :: accep_rate double precision :: delta, thr thr = 2.d0/time_step_sq logical :: first_loop first_loop = .True. do while (loop) ! Every walker makes a step do i_walk=1,walk_num if (.not.first_loop) then integer :: i,j,l do l=1,3 do i=1,elec_num+1 elec_coord(i,l) = elec_coord_full(i,l,i_walk) enddo do i=1,elec_num psi_grad_psi_inv_x(i) = psi_grad_psi_inv_save(i,1,i_walk) psi_grad_psi_inv_y(i) = psi_grad_psi_inv_save(i,2,i_walk) psi_grad_psi_inv_z(i) = psi_grad_psi_inv_save(i,3,i_walk) enddo psi_value = psi_value_save(i_walk) E_loc = E_loc_save(1,i_walk) enddo SOFT_TOUCH elec_coord psi_grad_psi_inv_x psi_grad_psi_inv_y psi_grad_psi_inv_z psi_value E_loc else do l=1,3 do i=1,elec_num+1 elec_coord(i,l) = elec_coord_full(i,l,i_walk) enddo enddo TOUCH elec_coord psi_value_save(i_walk) = psi_value E_loc_save(:,i_walk) = E_loc endif double precision :: p,q real :: delta_x logical :: accepted call brownian_step(p,q,accepted,delta_x) if ( psi_value * psi_value_save(i_walk) >= 0.d0 ) then ! delta = (E_loc+E_loc_save(1,i_walk))*0.5d0 ! delta = (5.d0 * E_loc + 8.d0 * E_loc_save(1,i_walk) - E_loc_save(2,i_walk))/12.d0 delta = (9.d0*E_loc+19.d0*E_loc_save(1,i_walk)- & 5.d0*E_loc_save(2,i_walk)+E_loc_save(3,i_walk))/24.d0 ! delta = -((-251.d0*E_loc)-646.d0*E_loc_save(1,i_walk)+264.d0*E_loc_save(2,i_walk)-& ! 106.d0*E_loc_save(3,i_walk)+19.d0*E_loc_save(4,i_walk))/720.d0 delta = (delta - E_ref)*p if (delta >= 0.d0) then srmc_weight(i_walk) = dexp(-dtime_step*delta) else srmc_weight(i_walk) = 2.d0-dexp(dtime_step*delta) endif ! if (accepted) then ! ! Compute correction to past weights ! double precision :: delta_old, delta_new ! delta_old = (9.d0*E_loc_save(1,i_walk)+19.d0*E_loc_save(2,i_walk)-& ! 5.d0*E_loc_save(3,i_walk)+E_loc_save(4,i_walk))/24.d0 - E_ref ! ! ! if (delta_old >= 0.d0) then ! srmc_weight(i_walk) = srmc_weight(i_walk) * dexp(dtime_step*delta_old) ! else ! srmc_weight(i_walk) = srmc_weight(i_walk) * (2.d0-dexp(-dtime_step*delta_old)) ! endif ! ! delta_new = (-(E_loc_save_tmp(3,i_walk)-13.d0*E_loc_save_tmp(2,i_walk)& ! -13.d0*E_loc_save_tmp(1,i_walk)+E_loc))/24.d0 - E_ref ! ! if (delta_new >= 0.d0) then ! srmc_weight(i_walk) = srmc_weight(i_walk) * dexp(-dtime_step*delta_new) ! else ! srmc_weight(i_walk) = srmc_weight(i_walk) * (2.d0-dexp(dtime_step*delta_new) ) ! endif ! ! endif elec_coord(elec_num+1,1) += p*time_step elec_coord(elec_num+1,2) = E_loc elec_coord(elec_num+1,3) = srmc_weight(i_walk) * srmc_pop_weight_mult do l=1,3 do i=1,elec_num+1 elec_coord_full(i,l,i_walk) = elec_coord(i,l) enddo enddo do i=1,elec_num psi_grad_psi_inv_save(i,1,i_walk) = psi_grad_psi_inv_x(i) psi_grad_psi_inv_save(i,2,i_walk) = psi_grad_psi_inv_y(i) psi_grad_psi_inv_save(i,3,i_walk) = psi_grad_psi_inv_z(i) enddo psi_value_save(i_walk) = psi_value if (accepted) then E_loc_save(4,i_walk) = E_loc_save(3,i_walk) E_loc_save(3,i_walk) = E_loc_save(2,i_walk) E_loc_save(2,i_walk) = E_loc_save(1,i_walk) E_loc_save(1,i_walk) = E_loc endif BEGIN_SHELL [ /usr/bin/env python2 ] from properties import * t = """ if (calc_$X) then ! Kahan's summation algorithm to compute these sums reducing the rounding error: ! $X_srmc_block_walk += $X * srmc_pop_weight_mult * srmc_weight(i_walk) ! $X_2_srmc_block_walk += $X_2 * srmc_pop_weight_mult * srmc_weight(i_walk) ! see http://en.wikipedia.org/wiki/Kahan_summation_algorithm $X_srmc_block_walk_kahan($D2 3) = $X * srmc_pop_weight_mult * srmc_weight(i_walk) - $X_srmc_block_walk_kahan($D2 1) $X_srmc_block_walk_kahan($D2 2) = $X_srmc_block_walk $D1 + $X_srmc_block_walk_kahan($D2 3) $X_srmc_block_walk_kahan($D2 1) = ($X_srmc_block_walk_kahan($D2 2) - $X_srmc_block_walk $D1 ) & - $X_srmc_block_walk_kahan($D2 3) $X_srmc_block_walk $D1 = $X_srmc_block_walk_kahan($D2 2) $X_2_srmc_block_walk_kahan($D2 3) = $X_2 * srmc_pop_weight_mult * srmc_weight(i_walk) - $X_2_srmc_block_walk_kahan($D2 1) $X_2_srmc_block_walk_kahan($D2 2) = $X_2_srmc_block_walk $D1 + $X_2_srmc_block_walk_kahan($D2 3) $X_2_srmc_block_walk_kahan($D2 1) = ($X_2_srmc_block_walk_kahan($D2 2) - $X_2_srmc_block_walk $D1 ) & - $X_2_srmc_block_walk_kahan($D2 3) $X_2_srmc_block_walk $D1 = $X_2_srmc_block_walk_kahan($D2 2) endif """ for p in properties: if p[2] == "": D1 = "" D2 = "" else: D1 = "("+":"*(p[2].count(',')+1)+")" D2 = ":"*(p[2].count(',')+1)+"," print t.replace("$X",p[1]).replace("$D1",D1).replace("$D2",D2) END_SHELL block_weight += srmc_pop_weight_mult * srmc_weight(i_walk) block_weight_vmc += 1.d0 else srmc_weight(i_walk) = 0.d0 endif enddo ! Move to the next projection step if (srmc_projection > 0) then srmc_projection_step = mod(srmc_projection_step,srmc_projection)+1 else srmc_projection_step = 1 endif ! Eventually, recompute the weight of the population if (srmc_projection_step == 1) then srmc_pop_weight_mult = 1.d0 do k=1,srmc_projection srmc_pop_weight_mult *= srmc_pop_weight(k) enddo endif ! Remove contribution of the old value of the weight at the new ! projection step srmc_pop_weight_mult *= 1.d0/srmc_pop_weight(srmc_projection_step) ! Compute the new weight of the population double precision :: sum_weight sum_weight = 0.d0 do k=1,walk_num sum_weight += srmc_weight(k) enddo srmc_pop_weight(srmc_projection_step) = sum_weight/dble(walk_num) ! Update the running population weight srmc_pop_weight_mult *= srmc_pop_weight(srmc_projection_step) ! Reconfiguration integer :: ipos(walk_num) do k=1,walk_num ipos(k) = k enddo call dsort(srmc_weight,ipos,walk_num) call reconfigure(ipos,srmc_weight) do k=1,walk_num do l=1,3 do i=1,elec_num+1 elec_coord_tmp(i,l,k) = elec_coord_full(i,l,k) enddo do i=1,elec_num psi_grad_psi_inv_save_tmp(i,l,k) = psi_grad_psi_inv_save(i,l,k) enddo enddo psi_value_save_tmp(k) = psi_value_save(k) E_loc_save_tmp(:,k) = E_loc_save(:,k) enddo integer :: ipm do k=1,walk_num ipm = ipos(k) do l=1,3 do i=1,elec_num+1 elec_coord_full(i,l,k) = elec_coord_tmp(i,l,ipm) enddo do i=1,elec_num psi_grad_psi_inv_save(i,l,k) = psi_grad_psi_inv_save_tmp(i,l,ipm) enddo enddo psi_value_save(k) = psi_value_save_tmp(ipm) E_loc_save(:,k) = E_loc_save_tmp(:,ipm) enddo call system_clock(cpu1, count_rate, count_max) if (cpu1 < cpu0) then cpu1 = cpu1+cpu0 endif loop = dble(cpu1-cpu0)/dble(count_rate) < block_time if (cpu1-cpu2 > count_rate) then integer :: do_run call get_running(do_run) loop = loop.and.(do_run == t_Running) cpu2 = cpu1 endif SOFT_TOUCH elec_coord_full srmc_pop_weight_mult first_loop = .False. enddo double precision :: factor factor = 1.d0/block_weight SOFT_TOUCH block_weight BEGIN_SHELL [ /usr/bin/env python2 ] from properties import * t = """ if (calc_$X) then $X_srmc_block_walk *= factor $X_2_srmc_block_walk *= factor endif """ for p in properties: print t.replace("$X",p[1]) END_SHELL deallocate ( elec_coord_tmp, psi_grad_psi_inv_save, psi_grad_psi_inv_save_tmp ) END_PROVIDER BEGIN_PROVIDER [ double precision, srmc_pop_weight_mult ] implicit none BEGIN_DOC ! Population weight of SRMC END_DOC srmc_pop_weight_mult = srmc_pop_weight(srmc_projection) END_PROVIDER BEGIN_PROVIDER [ integer, srmc_projection ] &BEGIN_PROVIDER [ integer, srmc_projection_step ] implicit none BEGIN_DOC ! Number of projection steps for SRMC END_DOC real :: srmc_projection_time srmc_projection_time = 1. call get_simulation_srmc_projection_time(srmc_projection_time) srmc_projection = int( srmc_projection_time/time_step) srmc_projection_step = 0 END_PROVIDER BEGIN_PROVIDER [ double precision, srmc_pop_weight, (0:srmc_projection+1) ] implicit none BEGIN_DOC ! Population weight of SRMC END_DOC srmc_pop_weight = 1.d0 END_PROVIDER