Merge pull request #2 from scemama/develop

Merge develop branch
This commit is contained in:
Anthony Scemama 2016-03-17 16:01:17 +01:00
commit b8f36ded55
21 changed files with 689 additions and 147 deletions

View File

@ -33,7 +33,6 @@ nuclei
nucl_label character*(32) (nuclei_nucl_num)
nucl_charge real (nuclei_nucl_num)
nucl_coord real (nuclei_nucl_num,3)
nucl_fitcusp_radius real (nuclei_nucl_num)
spindeterminants
n_det_alpha integer
@ -55,7 +54,7 @@ simulation
equilibration logical
http_server character*(128)
do_jast logical
do_nucl_fitcusp logical
nucl_fitcusp_factor real
method character*(32)
block_time integer
sampling character*(32)

View File

@ -4,7 +4,7 @@ set -u
set -e
cd .. ; QMCCHEM_PATH="$PWD" ; cd -
PACKAGES="core cryptokit ocamlfind sexplib"
PACKAGES="core cryptokit ocamlfind sexplib pa_sexp_conv"
declare -i i
i=$(gcc -dumpversion | cut -d '.' -f 2)

View File

@ -1,23 +1,29 @@
open Core.Std;;
let simulation_do_nucl_fitcusp = lazy(
if (not (Ezfio.has_pseudo_do_pseudo ())) then
not (Ezfio.get_pseudo_do_pseudo ())
let simulation_nucl_fitcusp_factor = lazy(
let default =
1.
in
if (Ezfio.has_pseudo_do_pseudo ()) then
if (Ezfio.get_pseudo_do_pseudo ()) then
0.
else
default
else
true
default
)
let electrons_elec_walk_num = lazy ( 30 )
let electrons_elec_walk_num_tot = lazy ( 10000 )
let electrons_elec_walk_num = lazy ( 100 )
let electrons_elec_walk_num_tot = lazy ( 1000 )
let jastrow_jast_type = lazy ( "None" )
let simulation_block_time = lazy ( 30 )
let simulation_ci_threshold = lazy ( 1.e-8 )
let simulation_ci_threshold = lazy ( 1.e-8 )
let simulation_method = lazy ( "VMC" )
let simulation_sampling = lazy ( "Langevin" )
let simulation_stop_time = lazy ( 3600 )
let simulation_time_step = lazy ( 0.15 )
let simulation_srmc_projection_time = lazy ( 1. )
let simulation_srmc_projection_time = lazy ( 1. )
let reset_defaults () =
List.iter ~f:(fun x -> Sys.remove ( (Lazy.force Qputils.ezfio_filename) ^ x))
@ -26,9 +32,9 @@ let reset_defaults () =
"/jastrow/jast_type" ;
"/simulation/block_time" ;
"/simulation/ci_threshold" ;
"/simulation/do_nucl_fitcusp" ;
"/simulation/method" ;
"/simulation/sampling" ;
"/simulation/stop_time" ;
"/simulation/time_step" ]
"/simulation/time_step" ;
"/simulation/nucl_fitcusp_factor" ]

View File

@ -66,81 +66,69 @@ end = struct
end
module Fitcusp : sig
type t = bool
module Fitcusp_factor : sig
type t = float
val doc : string
val read : unit -> t
val write : t -> unit
val to_bool : t -> bool
val of_bool : bool -> t
val to_int : t -> int
val of_int : int -> t
val to_float : t -> float
val of_float : float -> t
val to_string : t -> string
val of_string : string -> t
end = struct
type t = bool
type t = float
let doc = "Correct wave function to verify electron-nucleus cusp condition"
let doc = "Correct wave function to verify electron-nucleus cusp condition.
Fit is done for r < r_c(f) where r_c(f) = (1s orbital radius) x f. Value of f"
let of_bool x = x
let of_float x =
if (x < 0.) then
failwith "Fitcusp_factor should be >= 0.";
if (x > 10.) then
failwith "Fitcusp_factor is too large.";
x
let to_bool x = x
let to_float x = x
let read () =
let _ =
Lazy.force Qputils.ezfio_filename
in
if (not (Ezfio.has_simulation_do_nucl_fitcusp ())) then
Lazy.force Default.simulation_do_nucl_fitcusp
|> Ezfio.set_simulation_do_nucl_fitcusp ;
Ezfio.get_simulation_do_nucl_fitcusp ()
|> of_bool
ignore @@
Lazy.force Qputils.ezfio_filename ;
if (not (Ezfio.has_simulation_nucl_fitcusp_factor ())) then
begin
let factor =
Lazy.force Default.simulation_nucl_fitcusp_factor ;
in
Ezfio.set_simulation_nucl_fitcusp_factor factor
end ;
Ezfio.get_simulation_nucl_fitcusp_factor ()
|> of_float
let write t =
let _ =
Lazy.force Qputils.ezfio_filename
in
let () =
match (Pseudo.read () |> Pseudo.to_bool, to_bool t) with
| (true, true) -> failwith "Pseudopotentials and Fitcusp are incompatible"
| _ -> ()
in
to_bool t
|> Ezfio.set_simulation_do_nucl_fitcusp
to_float t
|> Ezfio.set_simulation_nucl_fitcusp_factor
let to_string t =
to_bool t
|> Bool.to_string
to_float t
|> Float.to_string
let of_string t =
try
String.lowercase t
|> Bool.of_string
|> of_bool
Float.of_string t
|> of_float
with
| Invalid_argument msg -> failwith msg
let to_int t =
let t =
to_bool t
in
if t then 1
else 0
let of_int = function
| 0 -> false
| 1 -> true
| _ -> failwith "Expected 0 or 1"
end
module Block_time : sig
@ -399,7 +387,7 @@ end
module Method : sig
type t = VMC | DMC | SRMC
type t = VMC | DMC | SRMC | FKMC
val doc : string
val read : unit -> t
val write : t -> unit
@ -408,21 +396,23 @@ module Method : sig
end = struct
type t = VMC | DMC | SRMC
type t = VMC | DMC | SRMC | FKMC
let doc = "QMC Method : [ VMC | DMC | SRMC ]"
let doc = "QMC Method : [ VMC | DMC | SRMC | FKMC ]"
let of_string = function
| "VMC" | "vmc" -> VMC
| "DMC" | "dmc" -> DMC
| "SRMC" | "srmc" -> SRMC
| x -> failwith ("Method should be [ VMC | DMC | SRMC ], not "^x^".")
| "FKMC" | "fkmc" -> FKMC
| x -> failwith ("Method should be [ VMC | DMC | SRMC | FKMC ], not "^x^".")
let to_string = function
| VMC -> "VMC"
| DMC -> "DMC"
| SRMC -> "SRMC"
| FKMC -> "FKMC"
let read () =
@ -855,8 +845,6 @@ let validate () =
Time_step.read ()
and jast_type =
Jastrow_type.read ()
and do_fitcusp =
Fitcusp.read ()
and do_pseudo =
Pseudo.read ()
in
@ -865,10 +853,12 @@ let validate () =
let () =
match (sampling, meth, Pseudo.to_bool do_pseudo) with
| (Sampling.Brownian, Method.DMC, true)
| (Sampling.Brownian, Method.FKMC, true)
| (Sampling.Brownian, Method.SRMC, true) ->
if ( (Time_step.to_float ts) >= 0.5 ) then
warn ( "Time step seems large for "^(Method.to_string meth) )
| (Sampling.Brownian, Method.SRMC, false)
| (Sampling.Brownian, Method.FKMC, false)
| (Sampling.Brownian, Method.DMC, false) ->
if ( (Time_step.to_float ts) >= 0.01 ) then
warn ( "Time step seems large for "^(Method.to_string meth) )
@ -879,8 +869,9 @@ let validate () =
if ( (Time_step.to_float ts) <= 0.01 ) then
warn "Time step seems small for Langevin sampling."
| (Sampling.Langevin, Method.SRMC, _)
| (Sampling.Langevin, Method.FKMC, _)
| (Sampling.Langevin, Method.DMC, _) ->
failwith "Lanvegin sampling is incompatible with DMC/SRMC"
failwith "Lanvegin sampling is incompatible with DMC"
in
@ -888,6 +879,7 @@ let validate () =
let () =
match (meth, Ref_energy.(read () |> to_float) ) with
| (Method.SRMC,0.)
| (Method.FKMC,0.)
| (Method.DMC,0.) -> failwith ("E_ref should not be zero in "^(Method.to_string meth) )
| _ -> ()
in
@ -902,6 +894,7 @@ let validate () =
let () =
match (meth, Property.(calc E_loc)) with
| (Method.SRMC, false)
| (Method.FKMC, false)
| (Method.DMC, false) -> failwith ( "E_loc should be sampled in "^(Method.to_string meth) )
| (Method.VMC, false) -> warn "Sampling of E_loc is not activated in input"
| _ -> ()
@ -915,13 +908,23 @@ let validate () =
| _ -> ()
in
(* Fitcusp is not recommended with pseudo *)
(* Fitcusp is incompatible with pseudo *)
let () =
match (Pseudo.to_bool do_pseudo, Fitcusp.to_bool do_fitcusp) with
| (true, true) -> warn "Fitcusp is incompatible with Pseudopotentials"
let f =
Fitcusp_factor.read ()
|> Fitcusp_factor.to_float
in
match (Pseudo.to_bool do_pseudo, f > 0.) with
| (true, true) ->
begin
warn "Electron-nucleus cusp fitting is incompatible with Pseudopotentials.";
Fitcusp_factor.of_float 0.
|> Fitcusp_factor.write
end
| _ -> ()
in
(* Other Checks *)
let () =
let _ =

View File

@ -37,10 +37,9 @@ let files_to_track = [
"mo_basis/mo_tot_num" ;
"nuclei/nucl_charge.gz" ;
"nuclei/nucl_coord.gz" ;
"nuclei/nucl_fitcusp_radius.gz" ;
"nuclei/nucl_num" ;
"simulation/ci_threshold" ;
"simulation/do_nucl_fitcusp" ;
"simulation/nucl_fitcusp_factor" ;
"simulation/jast_a_up_dn" ;
"simulation/jast_a_up_up" ;
"simulation/jast_b_up_dn" ;

View File

@ -71,8 +71,6 @@ let run ?(daemon=true) ezfio_filename =
(*
(** Checks if the port is already open (not working properly yet) *)
let check_port n =
let adress_prefix =
"tcp://*:"
@ -87,7 +85,9 @@ let run ?(daemon=true) ezfio_filename =
in
let result =
try
(ZMQ.Socket.bind socket address; accu );
ZMQ.Socket.bind socket address;
ZMQ.Socket.unbind socket address;
accu;
with
| _ -> false;
in
@ -100,22 +100,18 @@ let run ?(daemon=true) ezfio_filename =
else
`Unavailable
in
*)
(** Random port number between 49152 and 65535 *)
let port =
let newport =
(* ref (49152 + (Random.int 16383)) *)
ref ( 1024 + (Random.int (49151-1024)))
in
(*
while ((check_port !newport) = `Unavailable)
do
newport := 49152 + (Random.int 16383)
newport := 1024 + (Random.int (49151-1024))
done;
*)
!newport
in
@ -837,12 +833,13 @@ let run ?(daemon=true) ezfio_filename =
(* Handle signals *)
let handler s =
Printf.printf "Dataserver received the %s signal... killing\n%!" (Signal.to_string s);
Watchdog.kill ();
in
List.iter [
Signal.int ;
Signal.term ;
Signal.quit ;
Signal.int
]
~f:(fun x -> Signal.Expert.handle x handler)
;

View File

@ -20,7 +20,7 @@ type field =
| Walk_num
| Walk_num_tot
| Stop_time
| Fitcusp
| Fitcusp_factor
| Method
| Sampling
| Ref_energy
@ -54,8 +54,8 @@ let get field =
option_to_string Walk_num_tot.read Walk_num_tot.to_string Walk_num_tot.doc
| Stop_time ->
option_to_string Stop_time.read Stop_time.to_string Stop_time.doc
| Fitcusp ->
option_to_string Fitcusp.read Fitcusp.to_string Fitcusp.doc
| Fitcusp_factor ->
option_to_string Fitcusp_factor.read Fitcusp_factor.to_string Fitcusp_factor.doc
| Method ->
option_to_string Method.read Method.to_string Method.doc
| Sampling ->
@ -130,19 +130,19 @@ let run ~c ?f ?t ?l ?m ?e ?s ?ts ?w ?wt ?n ?j ?p ?input ezfio_filename =
in ();
in
handle_option Input.Ref_energy.(of_float , write) e;
handle_option Input.Jastrow_type.(of_string, write) j;
handle_option Input.Block_time.(of_int , write) l;
handle_option Input.Method.(of_string, write) m;
handle_option Input.Stop_time.(of_int , write) t;
handle_option Input.Sampling.(of_string, write) s;
handle_option Input.Fitcusp.(of_int , write) f;
handle_option Input.Time_step.(of_float , write) ts;
handle_option Input.Walk_num.(of_int , write) w;
handle_option Input.Walk_num_tot.(of_int , write) wt;
handle_option Input.CI_threshold.(of_float , write) n;
handle_option Input.SRMC_projection_time.(of_float , write) p;
handle_option Input.Ref_energy.(of_float , write) e;
handle_option Input.Jastrow_type.(of_string, write) j;
handle_option Input.Block_time.(of_int , write) l;
handle_option Input.Method.(of_string, write) m;
handle_option Input.Stop_time.(of_int , write) t;
handle_option Input.Sampling.(of_string, write) s;
handle_option Input.Fitcusp_factor.(of_float , write) f;
handle_option Input.Time_step.(of_float , write) ts;
handle_option Input.Walk_num.(of_int , write) w;
handle_option Input.Walk_num_tot.(of_int , write) wt;
handle_option Input.CI_threshold.(of_float , write) n;
handle_option Input.SRMC_projection_time.(of_float , write) p;
let fields =
[
@ -155,7 +155,7 @@ let run ~c ?f ?t ?l ?m ?e ?s ?ts ?w ?wt ?n ?j ?p ?input ezfio_filename =
Ref_energy ;
Walk_num ;
Walk_num_tot ;
Fitcusp ;
Fitcusp_factor ;
CI_threshold ;
Jastrow_type ;
Properties ;
@ -214,7 +214,7 @@ let run ~c ?f ?t ?l ?m ?e ?s ?ts ?w ?wt ?n ?j ?p ?input ezfio_filename =
begin
match f with
| Stop_time -> Stop_time.(of_string s |> write)
| Fitcusp -> Fitcusp.(of_string s |> write)
| Fitcusp_factor -> Fitcusp_factor.(of_string s |> write)
| Block_time -> Block_time.(of_string s |> write)
| Method -> Method.(of_string s |> write)
| Ref_energy -> Ref_energy.(of_string s |> write)
@ -271,8 +271,8 @@ let spec =
empty
+> flag "c" no_arg
~doc:(" Clear blocks")
+> flag "f" (optional int)
~doc:("0|1 "^Input.Fitcusp.doc)
+> flag "f" (optional float)
~doc:("float "^Input.Fitcusp_factor.doc)
+> flag "t" (optional int)
~doc:("seconds "^Input.Stop_time.doc)
+> flag "l" (optional int)

View File

@ -1,14 +1,20 @@
open Core.Std;;
let bind_socket ~socket_type ~socket ~address =
try
ZMQ.Socket.bind socket address
with
| Unix.Unix_error (_, message, f) ->
failwith @@ Printf.sprintf
"\n%s\nUnable to bind the forwarder's %s socket :\n %s\n%s"
f socket_type address message
| other_exception -> raise other_exception
let rec loop = function
| 0 -> failwith @@ Printf.sprintf
"Unable to bind the forwarder's %s socket : %s\n"
socket_type address
| -1 -> ()
| i ->
try
ZMQ.Socket.bind socket address;
loop (-1)
with
| Unix.Unix_error _ -> (Time.pause @@ Time.Span.of_float 1. ; loop (i-1) )
| other_exception -> raise other_exception
in loop 10
let run ezfio_filename dataserver =
@ -45,18 +51,41 @@ let run ezfio_filename dataserver =
*)
let () =
try
Unix.mkdir tmpdir
Unix.mkdir tmpdir;
Unix.chdir tmpdir
with
| Unix.Unix_error _ ->
(* TODO : wait until the forwarder has started *)
begin
Unix.chdir tmpdir;
ignore @@ Unix.exec ~prog ~args ()
Time.pause @@ Time.Span.of_float 0.1;
match (Sys.file_exists "PID") with
| `No
| `Unknown -> ()
| `Yes ->
let pid =
In_channel.with_file "PID" ~f:(fun ic ->
match (In_channel.input_line ic) with
| Some x -> x
| None -> "-1" )
|> Int.of_string
in
match pid with
| -1 -> ()
| pid ->
begin
match Signal.send (Signal.of_system_int 0) (`Pid (Pid.of_int pid)) with
| `No_such_process -> ()
| _ -> ignore @@ Unix.exec ~prog ~args ()
end
end
in
Unix.chdir tmpdir;
(* Now, only one forwarder will execute the following code *)
Out_channel.with_file "PID" ~f:(fun oc ->
Unix.getpid ()
|> Pid.to_int
|> Printf.sprintf "%d\n"
|> Out_channel.output_string oc);
(* Fork a qmc *)
ignore @@
@ -90,20 +119,20 @@ let run ezfio_filename dataserver =
with
| _ -> ()
;
done
done;
Watchdog.kill ()
in
(* Signal handler to Kill properly all the processes *)
let handler s =
Printf.printf "Forwarder received the %s signal... killing\n" (Signal.to_string s);
Printf.printf "Forwarder received the %s signal... killing\n%!" (Signal.to_string s);
terminate ();
Watchdog.kill ();
in
List.iter [
Signal.int ;
Signal.term ;
Signal.quit ;
Signal.int
]
~f:(fun x -> Signal.Expert.handle x handler)
;
@ -465,6 +494,13 @@ let run ezfio_filename dataserver =
end;
(* Wait for the qmc process to complete *)
ignore (Watchdog.join ());
terminate ()
try
ignore (Watchdog.join ());
terminate ()
with
| error ->
begin
terminate ();
raise error
end

View File

@ -7,8 +7,8 @@ let full_run ?(start_dataserver=true) ezfio_filename =
and scheduler =
Scheduler.find ()
in
Printf.printf "Scheduler : %s\n" (Scheduler.to_string scheduler);
Printf.printf "Launcher : %s\n" (Launcher.to_string launcher );
Printf.printf "Scheduler : %s\n%!" (Scheduler.to_string scheduler);
Printf.printf "Launcher : %s\n%!" (Launcher.to_string launcher );
(* Create the node file *)
@ -147,13 +147,13 @@ let run a d ?q ?s ezfio_filename =
(* Signal handler to Kill properly all the processes *)
let handler s =
Printf.printf "Received the %s signal... killing\n" (Signal.to_string s);
Printf.printf "QMC=Chem received the %s signal... killing\n%!" (Signal.to_string s);
Watchdog.kill ();
in
List.iter [
Signal.int ;
Signal.term ;
Signal.quit ;
Signal.int
]
~f:(fun x -> Signal.Expert.handle x handler)
;

View File

@ -8,7 +8,7 @@ let _threads = ref [] ;;
let kill () =
let kill pid =
Signal.send_i Signal.int (`Pid pid);
Printf.printf "Killed %d\n" (Pid.to_int pid)
Printf.printf "Killed %d\n%!" (Pid.to_int pid)
in
List.iter ~f:kill (!_list);
exit 1

View File

@ -1,7 +1,7 @@
MAIN=qmcchem
# Main program to build
PACKAGES=-package core,sexplib.syntax,cryptokit,str,ZMQ
PACKAGES=-package core,pa_sexp_conv,cryptokit,str,ZMQ
# Required opam packages, for example:
# PACKAGES=-package core,sexplib.syntax

View File

@ -73,6 +73,7 @@ BEGIN_PROVIDER [ logical, primitives_reduced ]
PROVIDE ao_power
PROVIDE ao_coef
PROVIDE ao_nucl
PROVIDE mo_fitcusp_normalization_before
do i=1,ao_num
if (ao_oned_p(i) /= 0.) then
l=ao_power(i,1)+ao_power(i,2)+ao_power(i,3)

View File

@ -30,6 +30,12 @@ t = """
$X_block_walk = $X_srmc_block_walk
$X_2_block_walk = $X_2_srmc_block_walk
endif
else if (qmc_method == t_FKMC) then
PROVIDE E_loc_fkmc_block_walk
if (calc_$X) then
$X_block_walk = $X_fkmc_block_walk
$X_2_block_walk = $X_2_fkmc_block_walk
endif
endif
END_PROVIDER

View File

@ -195,7 +195,7 @@ END_SHELL
do k=1,walk_num_dmc
sum_weight += dmc_weight(k)
enddo
E0 = E_ref - log(real(walk_num_dmc)/real(walk_num)) * 0.1d0/dtime_step
E0 = E_ref - log(sum_weight/real(walk_num)) * 0.1d0 /dtime_step
! Branching
integer :: ipos(walk_num_dmc_max), walk_num_dmc_new
@ -214,20 +214,22 @@ END_SHELL
ipos(k) = k
enddo
walk_num_dmc_new = walk_num_dmc
do k=1,walk_num_dmc
r = qmc_ranf()
if (dmc_weight(k) > 1.d0) then
if ( 1.d0+r < dmc_weight(k) ) then
walk_num_dmc = walk_num_dmc+1
ipos(walk_num_dmc) = k
walk_num_dmc_new = walk_num_dmc_new+1
ipos(walk_num_dmc_new) = k
endif
else
if ( r > dmc_weight(k) ) then
ipos(k) = ipos(walk_num_dmc)
walk_num_dmc = walk_num_dmc-1
ipos(k) = ipos(walk_num_dmc_new)
walk_num_dmc_new = walk_num_dmc_new-1
endif
endif
enddo
walk_num_dmc = walk_num_dmc_new
integer :: ipm
do k=1,walk_num_dmc
@ -328,7 +330,7 @@ BEGIN_PROVIDER [ integer, walk_num_dmc_max ]
BEGIN_DOC
! Max number of walkers in DMC
END_DOC
walk_num_dmc_max = 3 * walk_num
walk_num_dmc_max = max(3 * walk_num, 30)
END_PROVIDER

View File

@ -0,0 +1,375 @@
! Providers of *_fkmc_block_walk
!==============================
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
BEGIN_PROVIDER [ $T, $X_fkmc_block_walk $D1 ]
&BEGIN_PROVIDER [ $T, $X_fkmc_block_walk_kahan $D2 ]
&BEGIN_PROVIDER [ $T, $X_2_fkmc_block_walk $D1 ]
&BEGIN_PROVIDER [ $T, $X_2_fkmc_block_walk_kahan $D2 ]
implicit none
BEGIN_DOC
! fkMC averages of $X. Computed in E_loc_fkmc_block_walk
END_DOC
$X_fkmc_block_walk = 0.d0
$X_fkmc_block_walk_kahan = 0.d0
$X_2_fkmc_block_walk = 0.d0
$X_2_fkmc_block_walk_kahan = 0.d0
END_PROVIDER
"""
for p in properties:
if p[1] != 'e_loc':
if p[2] == "":
D1 = ""
D2 = ", (3)"
else:
D1 = ", ("+p[2][1:-1]+")"
D2 = ", ("+p[2][1:-1]+",3)"
print t.replace("$X",p[1]).replace("$T",p[0]).replace("$D1",D1).replace("$D2",D2)
END_SHELL
BEGIN_PROVIDER [ double precision, E_loc_fkmc_block_walk ]
&BEGIN_PROVIDER [ double precision, E_loc_2_fkmc_block_walk ]
&BEGIN_PROVIDER [ double precision, E_loc_fkmc_block_walk_kahan, (3) ]
&BEGIN_PROVIDER [ double precision, E_loc_2_fkmc_block_walk_kahan, (3) ]
implicit none
include '../types.F'
BEGIN_DOC
! Properties averaged over the block using the FKMC method
END_DOC
integer, parameter :: BIRTH=1, DEATH=2
real, allocatable :: elec_coord_tmp(:,:,:)
integer :: mod_align
double precision :: E_loc_save(walk_num_dmc_max)
double precision :: E_loc_save_tmp(walk_num_dmc_max)
double precision :: psi_value_save(walk_num)
double precision :: psi_value_save_tmp(walk_num)
double precision :: fkmc_weight(walk_num)
double precision :: delta(walk_num)
double precision, allocatable :: psi_grad_psi_inv_save(:,:,:)
double precision, allocatable :: psi_grad_psi_inv_save_tmp(:,:,:)
double precision, allocatable :: fkmc_clock_tmp(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_grad_psi_inv_save
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_grad_psi_inv_save_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: E_loc_save
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: E_loc_save_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: fkmc_weight
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: fkmc_clock_tmp
allocate ( psi_grad_psi_inv_save(elec_num_8,3,walk_num), &
psi_grad_psi_inv_save_tmp(elec_num_8,3,walk_num), &
elec_coord_tmp(mod_align(elec_num+1),3,walk_num), &
fkmc_clock_tmp(2,walk_num) )
psi_value_save = 0.d0
psi_value_save_tmp = 0.d0
fkmc_weight = 1.d0
! Initialization
if (vmc_algo /= t_Brownian) then
call abrt(irp_here,'FKMC should run with Brownian algorithm')
endif
integer :: k, i_walk, i_step
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
if (calc_$X) then
!DIR$ VECTOR ALIGNED
$X_fkmc_block_walk = 0.d0
!DIR$ VECTOR ALIGNED
$X_fkmc_block_walk_kahan = 0.d0
!DIR$ VECTOR ALIGNED
$X_2_fkmc_block_walk = 0.d0
!DIR$ VECTOR ALIGNED
$X_2_fkmc_block_walk_kahan = 0.d0
endif
"""
for p in properties:
print t.replace("$X",p[1])
END_SHELL
logical :: loop
integer*8 :: cpu0, cpu1, cpu2, count_rate, count_max
loop = .True.
call system_clock(cpu0, count_rate, count_max)
cpu2 = cpu0
block_weight = 0.d0
real, external :: accep_rate
double precision :: thr
thr = 2.d0/time_step_sq
logical :: first_loop
first_loop = .True.
do while (loop)
! Every walker makes a step
do i_walk=1,walk_num
if (.not.first_loop) then
integer :: i,j,l
do l=1,3
do i=1,elec_num+1
elec_coord(i,l) = elec_coord_full(i,l,i_walk)
enddo
do i=1,elec_num
psi_grad_psi_inv_x(i) = psi_grad_psi_inv_save(i,1,i_walk)
psi_grad_psi_inv_y(i) = psi_grad_psi_inv_save(i,2,i_walk)
psi_grad_psi_inv_z(i) = psi_grad_psi_inv_save(i,3,i_walk)
enddo
psi_value = psi_value_save(i_walk)
E_loc = E_loc_save(i_walk)
enddo
SOFT_TOUCH elec_coord psi_grad_psi_inv_x psi_grad_psi_inv_y psi_grad_psi_inv_z psi_value E_loc
else
do l=1,3
do i=1,elec_num+1
elec_coord(i,l) = elec_coord_full(i,l,i_walk)
enddo
enddo
TOUCH elec_coord
E_loc_save(i_walk) = E_loc
psi_value_save(i_walk) = psi_value
endif
double precision :: p,q
real :: delta_x
logical :: accepted
call brownian_step(p,q,accepted,delta_x)
if ( psi_value * psi_value_save(i_walk) >= 0.d0 ) then
delta(i_walk) = ((E_loc+E_loc_save(i_walk))*0.5d0 - E_ref) * p
if ( delta(i_walk) > thr ) then
delta(i_walk) = thr
else if ( delta(i_walk) < -thr ) then
delta(i_walk) = -thr
endif
fkmc_weight(i_walk) = dexp(-dtime_step*delta(i_walk))
elec_coord(elec_num+1,1) += p*time_step
elec_coord(elec_num+1,2) = E_loc
elec_coord(elec_num+1,3) = fkmc_weight(i_walk)
do l=1,3
do i=1,elec_num+1
elec_coord_full(i,l,i_walk) = elec_coord(i,l)
enddo
enddo
do i=1,elec_num
psi_grad_psi_inv_save(i,1,i_walk) = psi_grad_psi_inv_x(i)
psi_grad_psi_inv_save(i,2,i_walk) = psi_grad_psi_inv_y(i)
psi_grad_psi_inv_save(i,3,i_walk) = psi_grad_psi_inv_z(i)
enddo
psi_value_save(i_walk) = psi_value
E_loc_save(i_walk) = E_loc
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
if (calc_$X) then
! Kahan's summation algorithm to compute these sums reducing the rounding error:
! $X_fkmc_block_walk += $X * fkmc_weight(i_walk)
! $X_2_fkmc_block_walk += $X_2 * fkmc_weight(i_walk)
! see http://en.wikipedia.org/wiki/Kahan_summation_algorithm
$X_fkmc_block_walk_kahan($D2 3) = $X * fkmc_weight(i_walk) - $X_fkmc_block_walk_kahan($D2 1)
$X_fkmc_block_walk_kahan($D2 2) = $X_fkmc_block_walk $D1 + $X_fkmc_block_walk_kahan($D2 3)
$X_fkmc_block_walk_kahan($D2 1) = ($X_fkmc_block_walk_kahan($D2 2) - $X_fkmc_block_walk $D1 ) &
- $X_fkmc_block_walk_kahan($D2 3)
$X_fkmc_block_walk $D1 = $X_fkmc_block_walk_kahan($D2 2)
$X_2_fkmc_block_walk_kahan($D2 3) = $X_2 * fkmc_weight(i_walk) - $X_2_fkmc_block_walk_kahan($D2 1)
$X_2_fkmc_block_walk_kahan($D2 2) = $X_2_fkmc_block_walk $D1 + $X_2_fkmc_block_walk_kahan($D2 3)
$X_2_fkmc_block_walk_kahan($D2 1) = ($X_2_fkmc_block_walk_kahan($D2 2) - $X_2_fkmc_block_walk $D1 ) &
- $X_2_fkmc_block_walk_kahan($D2 3)
$X_2_fkmc_block_walk $D1 = $X_2_fkmc_block_walk_kahan($D2 2)
endif
"""
for p in properties:
if p[2] == "":
D1 = ""
D2 = ""
else:
D1 = "("+":"*(p[2].count(',')+1)+")"
D2 = ":"*(p[2].count(',')+1)+","
print t.replace("$X",p[1]).replace("$D1",D1).replace("$D2",D2)
END_SHELL
block_weight += fkmc_weight(i_walk)
else
fkmc_weight(i_walk) = 0.d0
delta(i_walk) = 1.d5
endif
enddo
! Compute the new weight of the population
double precision :: sum_weight
sum_weight = 0.d0
do k=1,walk_num
sum_weight += fkmc_weight(k)
enddo
do k=1,walk_num
do l=1,3
do i=1,elec_num+1
elec_coord_tmp(i,l,k) = elec_coord_full(i,l,k)
enddo
do i=1,elec_num
psi_grad_psi_inv_save_tmp(i,l,k) = psi_grad_psi_inv_save(i,l,k)
enddo
enddo
psi_value_save_tmp(k) = psi_value_save(k)
E_loc_save_tmp(k) = E_loc_save(k)
if (fkmc_weight(k) == 0.d0) then
fkmc_clock(DEATH,k) = -1.d0
endif
if ( delta(k) <= 0.d0 ) then
fkmc_clock_tmp(BIRTH,k) = fkmc_clock(BIRTH,k) +time_step * delta(k)
fkmc_clock_tmp(DEATH,k) = fkmc_clock(DEATH,k)
else
fkmc_clock_tmp(BIRTH,k) = fkmc_clock(BIRTH,k)
fkmc_clock_tmp(DEATH,k) = fkmc_clock(DEATH,k) -time_step * delta(k)
endif
enddo
! Reconfiguration
! ===============
! Identify first which walkers will be killed to place branched walkers there
! later
double precision, external :: qmc_ranf
integer :: ipm, m
integer :: killed(walk_num)
m=1
do k=1,walk_num
fkmc_clock(DEATH,k) = fkmc_clock_tmp(DEATH,k)
if (fkmc_clock_tmp(DEATH,k) <= 0.d0) then
killed(m) = k
m += 1
fkmc_clock(DEATH,k) = -dlog(qmc_ranf())
fkmc_clock(BIRTH,k) = -dlog(qmc_ranf())
ipm = k
do while (ipm == k)
ipm = 1 + int (walk_num*qmc_ranf())
enddo
do l=1,3
do i=1,elec_num+1
elec_coord_full(i,l,k) = elec_coord_tmp(i,l,ipm)
enddo
do i=1,elec_num
psi_grad_psi_inv_save(i,l,k) = psi_grad_psi_inv_save_tmp(i,l,ipm)
enddo
enddo
psi_value_save(k) = psi_value_save_tmp(ipm)
E_loc_save(k) = E_loc_save_tmp(ipm)
endif
enddo
killed(m) = 0
m=1
do k=1,walk_num
fkmc_clock(BIRTH,k) = fkmc_clock_tmp(BIRTH,k)
if (fkmc_clock_tmp(BIRTH,k) <= 0.d0) then
fkmc_clock(BIRTH,k) = -dlog(qmc_ranf())
if (killed(m) == 0) then
ipm = k
do while (ipm == k)
ipm = 1 + int (walk_num*qmc_ranf())
enddo
else
ipm = killed(m)
m +=1
endif
fkmc_clock(BIRTH,ipm) = -dlog(qmc_ranf())
fkmc_clock(DEATH,ipm) = -dlog(qmc_ranf())
do l=1,3
do i=1,elec_num+1
elec_coord_full(i,l,ipm) = elec_coord_tmp(i,l,k)
enddo
do i=1,elec_num
psi_grad_psi_inv_save(i,l,ipm) = psi_grad_psi_inv_save_tmp(i,l,k)
enddo
enddo
psi_value_save(ipm) = psi_value_save_tmp(k)
E_loc_save(ipm) = E_loc_save_tmp(k)
endif
enddo
call system_clock(cpu1, count_rate, count_max)
if (cpu1 < cpu0) then
cpu1 = cpu1+cpu0
endif
loop = dble(cpu1-cpu0) < dble(block_time)*dble(count_rate)
if (cpu1-cpu2 > count_rate) then
integer :: do_run
call get_running(do_run)
loop = do_run == t_Running
cpu2 = cpu1
endif
! Update E_ref to take into account the weight of the population
E_ref -= dlog(sum_weight / dble(walk_num) ) / time_step
SOFT_TOUCH elec_coord_full E_ref
first_loop = .False.
enddo
double precision :: factor
factor = 1.d0/block_weight
SOFT_TOUCH block_weight
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
if (calc_$X) then
$X_fkmc_block_walk *= factor
$X_2_fkmc_block_walk *= factor
endif
"""
for p in properties:
print t.replace("$X",p[1])
END_SHELL
deallocate ( elec_coord_tmp, psi_grad_psi_inv_save, psi_grad_psi_inv_save_tmp, &
fkmc_clock_tmp )
END_PROVIDER
BEGIN_PROVIDER [ double precision, fkmc_clock, (2,walk_num) ]
implicit none
BEGIN_DOC
! Branching clocks for the FKMC algotithm. (1,:) is the birth clock and
! (2,:) is the death clock.
END_DOC
integer :: i
double precision, external :: qmc_ranf
do i=1, walk_num
fkmc_clock(1,i) = -dlog(qmc_ranf())
fkmc_clock(2,i) = -dlog(qmc_ranf())
enddo
END_PROVIDER

View File

@ -133,7 +133,9 @@ END_SHELL
elec_coord(i,l) = elec_coord_full(i,l,i_walk)
enddo
enddo
SOFT_TOUCH elec_coord
TOUCH elec_coord
psi_value_save(i_walk) = psi_value
E_loc_save(i_walk) = E_loc
endif
double precision :: p,q

View File

@ -6,7 +6,6 @@ data = [ \
("nuclei_nucl_num" , "integer" , "" ),
("nuclei_nucl_charge" , "real" , "(nucl_num)" ),
("nuclei_nucl_coord" , "real" , "(nucl_num,3)" ),
("nuclei_nucl_fitcusp_radius" , "real" , "(nucl_num)" ),
("mo_basis_mo_coef" , "real" , "(ao_num,mo_tot_num)" ),
("electrons_elec_fitcusp_radius" , "real" , "" ),
("electrons_elec_alpha_num" , "integer" , "" ),
@ -38,9 +37,9 @@ data = [ \
("simulation_time_step" , "real" , "" ),
("simulation_srmc_projection_time" , "real" , "" ),
("simulation_method" , "character*(32)", "" ),
("simulation_nucl_fitcusp_factor" , "real" , "" ),
("simulation_save_data" , "logical" , "" ),
("simulation_print_level" , "integer" , "" ),
("simulation_do_nucl_fitcusp" , "logical" , "" ),
("simulation_sampling" , "character*(32)", "" ),
("simulation_ci_threshold" , "double precision" , "" ),
("simulation_http_server" , "character*(128)", "" ),

View File

@ -273,6 +273,15 @@ END_PROVIDER
enddo
endif
do i=1,mo_num
do j=1,elec_num
mo_value_transp(i,j) *= mo_cusp_rescale(i)
mo_grad_transp_x(i,j) *= mo_cusp_rescale(i)
mo_grad_transp_y(i,j) *= mo_cusp_rescale(i)
mo_grad_transp_z(i,j) *= mo_cusp_rescale(i)
mo_lapl_transp(i,j) *= mo_cusp_rescale(i)
enddo
enddo
END_PROVIDER
@ -401,6 +410,7 @@ BEGIN_PROVIDER [ double precision , mo_value_at_nucl, (mo_num_8,nucl_num) ]
integer :: i, j, k, l
real :: ao_value_at_nucl_no_S(ao_num)
PROVIDE mo_fitcusp_normalization_before
do k=1,nucl_num
point(1) = nucl_coord(k,1)
point(2) = nucl_coord(k,2)
@ -466,6 +476,99 @@ END_PROVIDER
FREE ao_value_p ao_grad_p ao_lapl_p ao_axis_grad_p ao_oned_grad_p ao_oned_prim_grad_p ao_oned_lapl_p ao_axis_lapl_p ao_oned_prim_lapl_p ao_oned_p ao_oned_prim_p ao_axis_p ao_axis_power_p
SOFT_TOUCH point
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_fitcusp_normalization_before, (mo_tot_num) ]
implicit none
BEGIN_DOC
! Renormalization factor of MOs due to cusp fitting
END_DOC
include 'constants.F'
integer :: i,j,k,l
double precision :: dr, r, f, t
integer, save :: ifirst = 0
if (ifirst == 0) then
ifirst = 1
mo_fitcusp_normalization_before = 0.d0
do k=1,nucl_num
dr = nucl_fitcusp_radius(k)*1.d-2
point(1) = nucl_coord(k,1)
point(2) = nucl_coord(k,2)
point(3) = nucl_coord(k,3)-dr
do l=1,101
r = point(3) + dr
point(3) = r
TOUCH point
f = dfour_pi*r*r*dr
do i=1,mo_tot_num
mo_fitcusp_normalization_before(i) += f*mo_value_p(i)**2
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_fitcusp_normalization_after, (mo_tot_num) ]
implicit none
BEGIN_DOC
! Renormalization factor of MOs due to cusp fitting
END_DOC
include 'constants.F'
integer :: i,j,k,l
double precision :: dr, r, f, t, t2
integer, save :: ifirst = 0
PROVIDE primitives_reduced
if (ifirst == 0) then
ifirst = 1
mo_fitcusp_normalization_after = 0.d0
do k=1,nucl_num
dr = nucl_fitcusp_radius(k)*1.d-2
point(1) = nucl_coord(k,1)
point(2) = nucl_coord(k,2)
point(3) = nucl_coord(k,3)- dr
do l=1,101
point(3) = point(3)+ dr
TOUCH point nucl_fitcusp_param primitives_reduced mo_coef
r = point(3)
f = dfour_pi*r*r*dr
do i=1,mo_num
t = 0.d0
do j=1,ao_num
if ( (ao_nucl(j) /= k).or.(ao_power(j,4) > 0) ) then
t = t + mo_coef(j,i) * ao_value_p(j)
endif
enddo
t = t + nucl_fitcusp_param(1,i,k) + &
r * (nucl_fitcusp_param(2,i,k) + &
r * (nucl_fitcusp_param(3,i,k) + &
r * nucl_fitcusp_param(4,i,k) ))
mo_fitcusp_normalization_after(i) += t*t*f
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ real, mo_cusp_rescale, (mo_tot_num) ]
implicit none
BEGIN_DOC
! Rescaling coefficient to normalize MOs after applying fitcusp
END_DOC
integer :: i
if (do_nucl_fitcusp) then
do i=1,mo_tot_num
! mo_cusp_rescale(i) = dsqrt(mo_fitcusp_normalization_before(i) / mo_fitcusp_normalization_after(i))
mo_cusp_rescale(i) = 1.d0/dsqrt(1.d0 - mo_fitcusp_normalization_before(i) + mo_fitcusp_normalization_after(i))
enddo
else
mo_cusp_rescale = 1.d0
endif
END_PROVIDER

View File

@ -125,17 +125,20 @@ BEGIN_PROVIDER [ real, nucl_fitcusp_radius, (nucl_num) ]
BEGIN_DOC
! Distance threshold for the fit
END_DOC
real :: def(nucl_num)
real :: def(nucl_num), factor
integer :: k
real, parameter :: a = 1.74891
real, parameter :: b = 0.126057
if (.not.do_nucl_fitcusp) then
if (.not. do_nucl_fitcusp) then
nucl_fitcusp_radius = 0.d0
return
endif
do k=1,nucl_num
nucl_fitcusp_radius(k) = .5/nucl_charge(k)
nucl_fitcusp_radius(k) = nucl_fitcusp_factor/(a*nucl_charge(k)+b)
enddo
call get_nuclei_nucl_fitcusp_radius(nucl_fitcusp_radius)
! Avoid dummy atoms
do k=1,nucl_num
if (nucl_charge(k) < 5.d-1) then

View File

@ -148,7 +148,7 @@ BEGIN_PROVIDER [ integer, qmc_method ]
implicit none
include 'types.F'
BEGIN_DOC
! qmc_method : Calculation method. Can be t_VMC, t_DMC, t_SRMC
! qmc_method : Calculation method. Can be t_VMC, t_DMC, t_SRMC, t_FKMC
END_DOC
character*(32) :: method
method = types(t_VMC)
@ -160,8 +160,10 @@ BEGIN_PROVIDER [ integer, qmc_method ]
qmc_method = t_DMC
else if (method == types(t_SRMC)) then
qmc_method = t_SRMC
else if (method == types(t_FKMC)) then
qmc_method = t_FKMC
else
call abrt(irp_here, 'Method should be ( VMC | DMC | SRMC )')
call abrt(irp_here, 'Method should be ( VMC | DMC | SRMC | FKMC )')
endif
call cinfo(irp_here,'qmc_method',trim(method))
@ -250,16 +252,21 @@ BEGIN_PROVIDER [ character*(64), hostname]
END_PROVIDER
BEGIN_PROVIDER [ logical, do_nucl_fitcusp ]
implicit none
BEGIN_DOC
! If true, do the fit of the electron-nucleus cusp
END_DOC
do_nucl_fitcusp = .True.
call get_simulation_do_nucl_fitcusp(do_nucl_fitcusp)
call linfo(irp_here,'do_nucl_fitcusp',do_nucl_fitcusp)
BEGIN_PROVIDER [ real, nucl_fitcusp_factor ]
&BEGIN_PROVIDER [ logical, do_nucl_fitcusp ]
implicit none
BEGIN_DOC
! The electron-nucleus cusp fitting is done between 0 and r_c,
! where r_c is chosen as nucl_fitcusp_factor * (radius_of_1s AO)
END_DOC
nucl_fitcusp_factor = 0.
call get_simulation_nucl_fitcusp_factor(nucl_fitcusp_factor)
do_nucl_fitcusp = nucl_fitcusp_factor > 0.
call info(irp_here,'nucl_fitcusp_factor',nucl_fitcusp_factor)
END_PROVIDER
BEGIN_PROVIDER [ integer, vmc_algo ]
implicit none
@ -283,6 +290,9 @@ BEGIN_PROVIDER [ integer, vmc_algo ]
if (qmc_method == t_SRMC) then
stop 'Langevin incompatible with SRMC'
endif
if (qmc_method == t_FKMC) then
stop 'Langevin incompatible with FKMC'
endif
else if (Sampling == types(t_MTM)) then
vmc_algo = t_MTM
else

View File

@ -6,6 +6,7 @@
integer, parameter :: t_VMC = 7
integer, parameter :: t_DMC = 8
integer, parameter :: t_SRMC = 9
integer, parameter :: t_FKMC = 10
integer, parameter :: t_Simple = 11
integer, parameter :: t_None = 12
@ -26,7 +27,7 @@
'VMC ', &
'DMC ', &
'SRMC ', &
' ', &
'FKMC ', &
'Simple ', &
'None ', &
' ', &