10
1
mirror of https://gitlab.com/scemama/qmcchem.git synced 2024-12-22 04:13:31 +01:00

Added Rousset FKMC algorithm

This commit is contained in:
Anthony Scemama 2016-03-17 15:51:45 +01:00
parent 194b1f750c
commit 756f2ccea4
9 changed files with 417 additions and 20 deletions

View File

@ -3,7 +3,7 @@ open Core.Std;;
let simulation_nucl_fitcusp_factor = lazy(
let default =
0.5
1.
in
if (Ezfio.has_pseudo_do_pseudo ()) then
if (Ezfio.get_pseudo_do_pseudo ()) then
@ -14,8 +14,8 @@ let simulation_nucl_fitcusp_factor = lazy(
default
)
let electrons_elec_walk_num = lazy ( 30 )
let electrons_elec_walk_num_tot = lazy ( 10000 )
let electrons_elec_walk_num = lazy ( 100 )
let electrons_elec_walk_num_tot = lazy ( 1000 )
let jastrow_jast_type = lazy ( "None" )
let simulation_block_time = lazy ( 30 )
let simulation_ci_threshold = lazy ( 1.e-8 )

View File

@ -387,7 +387,7 @@ end
module Method : sig
type t = VMC | DMC | SRMC
type t = VMC | DMC | SRMC | FKMC
val doc : string
val read : unit -> t
val write : t -> unit
@ -396,21 +396,23 @@ module Method : sig
end = struct
type t = VMC | DMC | SRMC
type t = VMC | DMC | SRMC | FKMC
let doc = "QMC Method : [ VMC | DMC | SRMC ]"
let doc = "QMC Method : [ VMC | DMC | SRMC | FKMC ]"
let of_string = function
| "VMC" | "vmc" -> VMC
| "DMC" | "dmc" -> DMC
| "SRMC" | "srmc" -> SRMC
| x -> failwith ("Method should be [ VMC | DMC | SRMC ], not "^x^".")
| "FKMC" | "fkmc" -> FKMC
| x -> failwith ("Method should be [ VMC | DMC | SRMC | FKMC ], not "^x^".")
let to_string = function
| VMC -> "VMC"
| DMC -> "DMC"
| SRMC -> "SRMC"
| FKMC -> "FKMC"
let read () =
@ -851,10 +853,12 @@ let validate () =
let () =
match (sampling, meth, Pseudo.to_bool do_pseudo) with
| (Sampling.Brownian, Method.DMC, true)
| (Sampling.Brownian, Method.FKMC, true)
| (Sampling.Brownian, Method.SRMC, true) ->
if ( (Time_step.to_float ts) >= 0.5 ) then
warn ( "Time step seems large for "^(Method.to_string meth) )
| (Sampling.Brownian, Method.SRMC, false)
| (Sampling.Brownian, Method.FKMC, false)
| (Sampling.Brownian, Method.DMC, false) ->
if ( (Time_step.to_float ts) >= 0.01 ) then
warn ( "Time step seems large for "^(Method.to_string meth) )
@ -865,8 +869,9 @@ let validate () =
if ( (Time_step.to_float ts) <= 0.01 ) then
warn "Time step seems small for Langevin sampling."
| (Sampling.Langevin, Method.SRMC, _)
| (Sampling.Langevin, Method.FKMC, _)
| (Sampling.Langevin, Method.DMC, _) ->
failwith "Lanvegin sampling is incompatible with DMC/SRMC"
failwith "Lanvegin sampling is incompatible with DMC"
in
@ -874,6 +879,7 @@ let validate () =
let () =
match (meth, Ref_energy.(read () |> to_float) ) with
| (Method.SRMC,0.)
| (Method.FKMC,0.)
| (Method.DMC,0.) -> failwith ("E_ref should not be zero in "^(Method.to_string meth) )
| _ -> ()
in
@ -888,6 +894,7 @@ let validate () =
let () =
match (meth, Property.(calc E_loc)) with
| (Method.SRMC, false)
| (Method.FKMC, false)
| (Method.DMC, false) -> failwith ( "E_loc should be sampled in "^(Method.to_string meth) )
| (Method.VMC, false) -> warn "Sampling of E_loc is not activated in input"
| _ -> ()

View File

@ -30,6 +30,12 @@ t = """
$X_block_walk = $X_srmc_block_walk
$X_2_block_walk = $X_2_srmc_block_walk
endif
else if (qmc_method == t_FKMC) then
PROVIDE E_loc_fkmc_block_walk
if (calc_$X) then
$X_block_walk = $X_fkmc_block_walk
$X_2_block_walk = $X_2_fkmc_block_walk
endif
endif
END_PROVIDER

View File

@ -195,7 +195,7 @@ END_SHELL
do k=1,walk_num_dmc
sum_weight += dmc_weight(k)
enddo
E0 = E_ref - log(real(walk_num_dmc)/real(walk_num)) * 0.1d0/dtime_step
E0 = E_ref - log(sum_weight/real(walk_num)) * 0.1d0 /dtime_step
! Branching
integer :: ipos(walk_num_dmc_max), walk_num_dmc_new
@ -214,20 +214,22 @@ END_SHELL
ipos(k) = k
enddo
walk_num_dmc_new = walk_num_dmc
do k=1,walk_num_dmc
r = qmc_ranf()
if (dmc_weight(k) > 1.d0) then
if ( 1.d0+r < dmc_weight(k) ) then
walk_num_dmc = walk_num_dmc+1
ipos(walk_num_dmc) = k
walk_num_dmc_new = walk_num_dmc_new+1
ipos(walk_num_dmc_new) = k
endif
else
if ( r > dmc_weight(k) ) then
ipos(k) = ipos(walk_num_dmc)
walk_num_dmc = walk_num_dmc-1
ipos(k) = ipos(walk_num_dmc_new)
walk_num_dmc_new = walk_num_dmc_new-1
endif
endif
enddo
walk_num_dmc = walk_num_dmc_new
integer :: ipm
do k=1,walk_num_dmc
@ -328,7 +330,7 @@ BEGIN_PROVIDER [ integer, walk_num_dmc_max ]
BEGIN_DOC
! Max number of walkers in DMC
END_DOC
walk_num_dmc_max = 3 * walk_num
walk_num_dmc_max = max(3 * walk_num, 30)
END_PROVIDER

View File

@ -0,0 +1,375 @@
! Providers of *_fkmc_block_walk
!==============================
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
BEGIN_PROVIDER [ $T, $X_fkmc_block_walk $D1 ]
&BEGIN_PROVIDER [ $T, $X_fkmc_block_walk_kahan $D2 ]
&BEGIN_PROVIDER [ $T, $X_2_fkmc_block_walk $D1 ]
&BEGIN_PROVIDER [ $T, $X_2_fkmc_block_walk_kahan $D2 ]
implicit none
BEGIN_DOC
! fkMC averages of $X. Computed in E_loc_fkmc_block_walk
END_DOC
$X_fkmc_block_walk = 0.d0
$X_fkmc_block_walk_kahan = 0.d0
$X_2_fkmc_block_walk = 0.d0
$X_2_fkmc_block_walk_kahan = 0.d0
END_PROVIDER
"""
for p in properties:
if p[1] != 'e_loc':
if p[2] == "":
D1 = ""
D2 = ", (3)"
else:
D1 = ", ("+p[2][1:-1]+")"
D2 = ", ("+p[2][1:-1]+",3)"
print t.replace("$X",p[1]).replace("$T",p[0]).replace("$D1",D1).replace("$D2",D2)
END_SHELL
BEGIN_PROVIDER [ double precision, E_loc_fkmc_block_walk ]
&BEGIN_PROVIDER [ double precision, E_loc_2_fkmc_block_walk ]
&BEGIN_PROVIDER [ double precision, E_loc_fkmc_block_walk_kahan, (3) ]
&BEGIN_PROVIDER [ double precision, E_loc_2_fkmc_block_walk_kahan, (3) ]
implicit none
include '../types.F'
BEGIN_DOC
! Properties averaged over the block using the FKMC method
END_DOC
integer, parameter :: BIRTH=1, DEATH=2
real, allocatable :: elec_coord_tmp(:,:,:)
integer :: mod_align
double precision :: E_loc_save(walk_num_dmc_max)
double precision :: E_loc_save_tmp(walk_num_dmc_max)
double precision :: psi_value_save(walk_num)
double precision :: psi_value_save_tmp(walk_num)
double precision :: fkmc_weight(walk_num)
double precision :: delta(walk_num)
double precision, allocatable :: psi_grad_psi_inv_save(:,:,:)
double precision, allocatable :: psi_grad_psi_inv_save_tmp(:,:,:)
double precision, allocatable :: fkmc_clock_tmp(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_grad_psi_inv_save
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_grad_psi_inv_save_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: E_loc_save
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: E_loc_save_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: psi_value_save_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: fkmc_weight
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: fkmc_clock_tmp
allocate ( psi_grad_psi_inv_save(elec_num_8,3,walk_num), &
psi_grad_psi_inv_save_tmp(elec_num_8,3,walk_num), &
elec_coord_tmp(mod_align(elec_num+1),3,walk_num), &
fkmc_clock_tmp(2,walk_num) )
psi_value_save = 0.d0
psi_value_save_tmp = 0.d0
fkmc_weight = 1.d0
! Initialization
if (vmc_algo /= t_Brownian) then
call abrt(irp_here,'FKMC should run with Brownian algorithm')
endif
integer :: k, i_walk, i_step
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
if (calc_$X) then
!DIR$ VECTOR ALIGNED
$X_fkmc_block_walk = 0.d0
!DIR$ VECTOR ALIGNED
$X_fkmc_block_walk_kahan = 0.d0
!DIR$ VECTOR ALIGNED
$X_2_fkmc_block_walk = 0.d0
!DIR$ VECTOR ALIGNED
$X_2_fkmc_block_walk_kahan = 0.d0
endif
"""
for p in properties:
print t.replace("$X",p[1])
END_SHELL
logical :: loop
integer*8 :: cpu0, cpu1, cpu2, count_rate, count_max
loop = .True.
call system_clock(cpu0, count_rate, count_max)
cpu2 = cpu0
block_weight = 0.d0
real, external :: accep_rate
double precision :: thr
thr = 2.d0/time_step_sq
logical :: first_loop
first_loop = .True.
do while (loop)
! Every walker makes a step
do i_walk=1,walk_num
if (.not.first_loop) then
integer :: i,j,l
do l=1,3
do i=1,elec_num+1
elec_coord(i,l) = elec_coord_full(i,l,i_walk)
enddo
do i=1,elec_num
psi_grad_psi_inv_x(i) = psi_grad_psi_inv_save(i,1,i_walk)
psi_grad_psi_inv_y(i) = psi_grad_psi_inv_save(i,2,i_walk)
psi_grad_psi_inv_z(i) = psi_grad_psi_inv_save(i,3,i_walk)
enddo
psi_value = psi_value_save(i_walk)
E_loc = E_loc_save(i_walk)
enddo
SOFT_TOUCH elec_coord psi_grad_psi_inv_x psi_grad_psi_inv_y psi_grad_psi_inv_z psi_value E_loc
else
do l=1,3
do i=1,elec_num+1
elec_coord(i,l) = elec_coord_full(i,l,i_walk)
enddo
enddo
TOUCH elec_coord
E_loc_save(i_walk) = E_loc
psi_value_save(i_walk) = psi_value
endif
double precision :: p,q
real :: delta_x
logical :: accepted
call brownian_step(p,q,accepted,delta_x)
if ( psi_value * psi_value_save(i_walk) >= 0.d0 ) then
delta(i_walk) = ((E_loc+E_loc_save(i_walk))*0.5d0 - E_ref) * p
if ( delta(i_walk) > thr ) then
delta(i_walk) = thr
else if ( delta(i_walk) < -thr ) then
delta(i_walk) = -thr
endif
fkmc_weight(i_walk) = dexp(-dtime_step*delta(i_walk))
elec_coord(elec_num+1,1) += p*time_step
elec_coord(elec_num+1,2) = E_loc
elec_coord(elec_num+1,3) = fkmc_weight(i_walk)
do l=1,3
do i=1,elec_num+1
elec_coord_full(i,l,i_walk) = elec_coord(i,l)
enddo
enddo
do i=1,elec_num
psi_grad_psi_inv_save(i,1,i_walk) = psi_grad_psi_inv_x(i)
psi_grad_psi_inv_save(i,2,i_walk) = psi_grad_psi_inv_y(i)
psi_grad_psi_inv_save(i,3,i_walk) = psi_grad_psi_inv_z(i)
enddo
psi_value_save(i_walk) = psi_value
E_loc_save(i_walk) = E_loc
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
if (calc_$X) then
! Kahan's summation algorithm to compute these sums reducing the rounding error:
! $X_fkmc_block_walk += $X * fkmc_weight(i_walk)
! $X_2_fkmc_block_walk += $X_2 * fkmc_weight(i_walk)
! see http://en.wikipedia.org/wiki/Kahan_summation_algorithm
$X_fkmc_block_walk_kahan($D2 3) = $X * fkmc_weight(i_walk) - $X_fkmc_block_walk_kahan($D2 1)
$X_fkmc_block_walk_kahan($D2 2) = $X_fkmc_block_walk $D1 + $X_fkmc_block_walk_kahan($D2 3)
$X_fkmc_block_walk_kahan($D2 1) = ($X_fkmc_block_walk_kahan($D2 2) - $X_fkmc_block_walk $D1 ) &
- $X_fkmc_block_walk_kahan($D2 3)
$X_fkmc_block_walk $D1 = $X_fkmc_block_walk_kahan($D2 2)
$X_2_fkmc_block_walk_kahan($D2 3) = $X_2 * fkmc_weight(i_walk) - $X_2_fkmc_block_walk_kahan($D2 1)
$X_2_fkmc_block_walk_kahan($D2 2) = $X_2_fkmc_block_walk $D1 + $X_2_fkmc_block_walk_kahan($D2 3)
$X_2_fkmc_block_walk_kahan($D2 1) = ($X_2_fkmc_block_walk_kahan($D2 2) - $X_2_fkmc_block_walk $D1 ) &
- $X_2_fkmc_block_walk_kahan($D2 3)
$X_2_fkmc_block_walk $D1 = $X_2_fkmc_block_walk_kahan($D2 2)
endif
"""
for p in properties:
if p[2] == "":
D1 = ""
D2 = ""
else:
D1 = "("+":"*(p[2].count(',')+1)+")"
D2 = ":"*(p[2].count(',')+1)+","
print t.replace("$X",p[1]).replace("$D1",D1).replace("$D2",D2)
END_SHELL
block_weight += fkmc_weight(i_walk)
else
fkmc_weight(i_walk) = 0.d0
delta(i_walk) = 1.d5
endif
enddo
! Compute the new weight of the population
double precision :: sum_weight
sum_weight = 0.d0
do k=1,walk_num
sum_weight += fkmc_weight(k)
enddo
do k=1,walk_num
do l=1,3
do i=1,elec_num+1
elec_coord_tmp(i,l,k) = elec_coord_full(i,l,k)
enddo
do i=1,elec_num
psi_grad_psi_inv_save_tmp(i,l,k) = psi_grad_psi_inv_save(i,l,k)
enddo
enddo
psi_value_save_tmp(k) = psi_value_save(k)
E_loc_save_tmp(k) = E_loc_save(k)
if (fkmc_weight(k) == 0.d0) then
fkmc_clock(DEATH,k) = -1.d0
endif
if ( delta(k) <= 0.d0 ) then
fkmc_clock_tmp(BIRTH,k) = fkmc_clock(BIRTH,k) +time_step * delta(k)
fkmc_clock_tmp(DEATH,k) = fkmc_clock(DEATH,k)
else
fkmc_clock_tmp(BIRTH,k) = fkmc_clock(BIRTH,k)
fkmc_clock_tmp(DEATH,k) = fkmc_clock(DEATH,k) -time_step * delta(k)
endif
enddo
! Reconfiguration
! ===============
! Identify first which walkers will be killed to place branched walkers there
! later
double precision, external :: qmc_ranf
integer :: ipm, m
integer :: killed(walk_num)
m=1
do k=1,walk_num
fkmc_clock(DEATH,k) = fkmc_clock_tmp(DEATH,k)
if (fkmc_clock_tmp(DEATH,k) <= 0.d0) then
killed(m) = k
m += 1
fkmc_clock(DEATH,k) = -dlog(qmc_ranf())
fkmc_clock(BIRTH,k) = -dlog(qmc_ranf())
ipm = k
do while (ipm == k)
ipm = 1 + int (walk_num*qmc_ranf())
enddo
do l=1,3
do i=1,elec_num+1
elec_coord_full(i,l,k) = elec_coord_tmp(i,l,ipm)
enddo
do i=1,elec_num
psi_grad_psi_inv_save(i,l,k) = psi_grad_psi_inv_save_tmp(i,l,ipm)
enddo
enddo
psi_value_save(k) = psi_value_save_tmp(ipm)
E_loc_save(k) = E_loc_save_tmp(ipm)
endif
enddo
killed(m) = 0
m=1
do k=1,walk_num
fkmc_clock(BIRTH,k) = fkmc_clock_tmp(BIRTH,k)
if (fkmc_clock_tmp(BIRTH,k) <= 0.d0) then
fkmc_clock(BIRTH,k) = -dlog(qmc_ranf())
if (killed(m) == 0) then
ipm = k
do while (ipm == k)
ipm = 1 + int (walk_num*qmc_ranf())
enddo
else
ipm = killed(m)
m +=1
endif
fkmc_clock(BIRTH,ipm) = -dlog(qmc_ranf())
fkmc_clock(DEATH,ipm) = -dlog(qmc_ranf())
do l=1,3
do i=1,elec_num+1
elec_coord_full(i,l,ipm) = elec_coord_tmp(i,l,k)
enddo
do i=1,elec_num
psi_grad_psi_inv_save(i,l,ipm) = psi_grad_psi_inv_save_tmp(i,l,k)
enddo
enddo
psi_value_save(ipm) = psi_value_save_tmp(k)
E_loc_save(ipm) = E_loc_save_tmp(k)
endif
enddo
call system_clock(cpu1, count_rate, count_max)
if (cpu1 < cpu0) then
cpu1 = cpu1+cpu0
endif
loop = dble(cpu1-cpu0) < dble(block_time)*dble(count_rate)
if (cpu1-cpu2 > count_rate) then
integer :: do_run
call get_running(do_run)
loop = do_run == t_Running
cpu2 = cpu1
endif
! Update E_ref to take into account the weight of the population
E_ref -= dlog(sum_weight / dble(walk_num) ) / time_step
SOFT_TOUCH elec_coord_full E_ref
first_loop = .False.
enddo
double precision :: factor
factor = 1.d0/block_weight
SOFT_TOUCH block_weight
BEGIN_SHELL [ /usr/bin/python ]
from properties import *
t = """
if (calc_$X) then
$X_fkmc_block_walk *= factor
$X_2_fkmc_block_walk *= factor
endif
"""
for p in properties:
print t.replace("$X",p[1])
END_SHELL
deallocate ( elec_coord_tmp, psi_grad_psi_inv_save, psi_grad_psi_inv_save_tmp, &
fkmc_clock_tmp )
END_PROVIDER
BEGIN_PROVIDER [ double precision, fkmc_clock, (2,walk_num) ]
implicit none
BEGIN_DOC
! Branching clocks for the FKMC algotithm. (1,:) is the birth clock and
! (2,:) is the death clock.
END_DOC
integer :: i
double precision, external :: qmc_ranf
do i=1, walk_num
fkmc_clock(1,i) = -dlog(qmc_ranf())
fkmc_clock(2,i) = -dlog(qmc_ranf())
enddo
END_PROVIDER

View File

@ -133,7 +133,9 @@ END_SHELL
elec_coord(i,l) = elec_coord_full(i,l,i_walk)
enddo
enddo
SOFT_TOUCH elec_coord
TOUCH elec_coord
psi_value_save(i_walk) = psi_value
E_loc_save(i_walk) = E_loc
endif
double precision :: p,q

View File

@ -47,7 +47,6 @@ END_PROVIDER
END_DOC
mo_scale = 1.d0/(0.4d0*log(float(elec_num+1)))
mo_norm = mo_scale*mo_scale
END_PROVIDER
@ -536,7 +535,7 @@ BEGIN_PROVIDER [ double precision, mo_fitcusp_normalization_after, (mo_tot_num)
TOUCH point nucl_fitcusp_param primitives_reduced mo_coef
r = point(3)
f = dfour_pi*r*r*dr
do i=1,mo_tot_num
do i=1,mo_num
t = 0.d0
do j=1,ao_num
if ( (ao_nucl(j) /= k).or.(ao_power(j,4) > 0) ) then

View File

@ -148,7 +148,7 @@ BEGIN_PROVIDER [ integer, qmc_method ]
implicit none
include 'types.F'
BEGIN_DOC
! qmc_method : Calculation method. Can be t_VMC, t_DMC, t_SRMC
! qmc_method : Calculation method. Can be t_VMC, t_DMC, t_SRMC, t_FKMC
END_DOC
character*(32) :: method
method = types(t_VMC)
@ -160,8 +160,10 @@ BEGIN_PROVIDER [ integer, qmc_method ]
qmc_method = t_DMC
else if (method == types(t_SRMC)) then
qmc_method = t_SRMC
else if (method == types(t_FKMC)) then
qmc_method = t_FKMC
else
call abrt(irp_here, 'Method should be ( VMC | DMC | SRMC )')
call abrt(irp_here, 'Method should be ( VMC | DMC | SRMC | FKMC )')
endif
call cinfo(irp_here,'qmc_method',trim(method))
@ -288,6 +290,9 @@ BEGIN_PROVIDER [ integer, vmc_algo ]
if (qmc_method == t_SRMC) then
stop 'Langevin incompatible with SRMC'
endif
if (qmc_method == t_FKMC) then
stop 'Langevin incompatible with FKMC'
endif
else if (Sampling == types(t_MTM)) then
vmc_algo = t_MTM
else

View File

@ -6,6 +6,7 @@
integer, parameter :: t_VMC = 7
integer, parameter :: t_DMC = 8
integer, parameter :: t_SRMC = 9
integer, parameter :: t_FKMC = 10
integer, parameter :: t_Simple = 11
integer, parameter :: t_None = 12
@ -26,7 +27,7 @@
'VMC ', &
'DMC ', &
'SRMC ', &
' ', &
'FKMC ', &
'Simple ', &
'None ', &
' ', &