10
1
mirror of https://gitlab.com/scemama/qmcchem.git synced 2025-01-02 17:45:39 +01:00

Merge branch 'master' of gitlab.com:scemama/qmcchem

This commit is contained in:
Anthony Scemama 2022-01-14 12:46:57 +01:00
commit 557ef562cb

View File

@ -0,0 +1,311 @@
BEGIN_PROVIDER [ double precision, jast_1b_value, (elec_num_8) ]
BEGIN_DOC
! 1-body Jastrow
END_DOC
include '../constants.F'
implicit none
integer :: i, j
double precision :: a, c, rij, tmp
double precision :: z, mu, mu_pi, zr, mur
do i = 1, elec_num
jast_1b_value(i) = 0.d0
if( jast_1b_type .eq. 1 ) then ! add 1body-Slater Jastrow
! J(i) = - \sum_A c_A exp( - alpha_A r_iA )
! !DIR$ LOOP COUNT (100)
! do j = 1, nucl_num
! a = jast_1bslat_expo(j)
! c = jast_1bslat_coef(j)
! rij = nucl_elec_dist(j,i)
! tmp = c * dexp( - a * rij )
! jast_1b_value(i) -= tmp
! enddo
elseif( jast_1b_type .eq. 2 ) then ! add 1body-Tanh Jastrow
! J(i) = - \sum_A tanh(alpha_A r_iA )
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_1btanh_pen(j)
rij = nucl_elec_dist(j,i)
tmp = dtanh(a*rij)
jast_1b_value(i) -= tmp
enddo
elseif( jast_1b_type .eq. 3 ) then ! add 1body-Simple Jastrow
! J(i) = - \sum_A [ (alpha_A r_iA) / (1 + alpha_A r_iA) ]^2
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_pen(j)
rij = a * nucl_elec_dist(j,i)
tmp = rij / (1.d0 + rij)
jast_1b_value(i) -= tmp*tmp
enddo
elseif( jast_1b_type .eq. 4 ) then ! add 1body-RSDFT Jastrow
! J(i) = - \sum_A [ -z_A r_iA erfc(mu*r_iA) + z_A exp(-(mu*r_iA)^2)/(mu*sqt_pi) ]
! mu = jast_mu_erf
mu = mu_erf
mu_pi = 1.d0 / ( dsqpi * mu )
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
rij = nucl_elec_dist(j,i)
z = nucl_charge(j)
zr = z * rij
mur = mu * rij
tmp = - zr * ( 1.d0 - derf(mur) ) + z * mu_pi * dexp(-mur*mur)
jast_1b_value(i) -= tmp
enddo
elseif( jast_1b_type .eq. 5 ) then ! add 1body-erf Jastrow
! J(i) = - \sum_A erf( alpha_A r_iA )
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_1berf_pen(j)
rij = nucl_elec_dist(j,i)
tmp = derf(a*rij)
jast_1b_value(i) -= tmp
enddo
elseif( jast_1b_type .eq. 6 ) then ! add 1body-Gauss Jastrow
! J(i) = - \sum_A [ 1 - exp( -alpha_A r_iA^2 ) ]
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_1bGauss_pen(j)
rij = nucl_elec_dist(j,i)
tmp = 1.d0 - dexp(-a*rij*rij)
jast_1b_value(i) -= tmp
enddo
endif
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, jast_1b_grad_x, (elec_num_8) ]
&BEGIN_PROVIDER [ double precision, jast_1b_grad_y, (elec_num_8) ]
&BEGIN_PROVIDER [ double precision, jast_1b_grad_z, (elec_num_8) ]
BEGIN_DOC
! Gradient of the Jastrow
END_DOC
include '../constants.F'
implicit none
integer :: i, j
double precision :: a, c, rij, tmp
double precision :: z, mu, mur
do i = 1, elec_num
jast_1b_grad_x(i) = 0.d0
jast_1b_grad_y(i) = 0.d0
jast_1b_grad_z(i) = 0.d0
if( jast_1b_type .eq. 1 ) then ! add 1body-Slater Jastrow
! J(i) = - \sum_A c_A exp( - alpha_A r_iA )
! !DIR$ LOOP COUNT (100)
! do j = 1, nucl_num
! a = jast_1bslat_expo(j)
! c = jast_1bslat_coef(j)
! rij = nucl_elec_dist(j,i)
! tmp = c * a * dexp( - a * rij ) / rij
! jast_1b_grad_x(i) -= nucl_elec_dist_vec(1,j,i) * tmp
! jast_1b_grad_y(i) -= nucl_elec_dist_vec(2,j,i) * tmp
! jast_1b_grad_z(i) -= nucl_elec_dist_vec(3,j,i) * tmp
! enddo
elseif( jast_1b_type .eq. 2 ) then ! add 1body-Tanh Jastrow
! J(i) = - \sum_A tanh(alpha_A r_iA )
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_1btanh_pen(j)
rij = nucl_elec_dist(j,i)
c = dtanh(a*rij)
tmp = a * ( 1.d0 - c*c ) / rij
jast_1b_grad_x(i) -= nucl_elec_dist_vec(1,j,i) * tmp
jast_1b_grad_y(i) -= nucl_elec_dist_vec(2,j,i) * tmp
jast_1b_grad_z(i) -= nucl_elec_dist_vec(3,j,i) * tmp
enddo
elseif( jast_1b_type .eq. 3 ) then ! add 1body-Simple Jastrow
! J(i) = - \sum_A [ (alpha_A r_iA) / (1 + alpha_A r_iA) ]^2
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_pen(j)
rij = a * nucl_elec_dist(j,i)
tmp = (a+a)*a / (1.d0+rij*(3.d0+rij*(3.d0+rij)))
jast_1b_grad_x(i) -= nucl_elec_dist_vec(1,j,i) * tmp
jast_1b_grad_y(i) -= nucl_elec_dist_vec(2,j,i) * tmp
jast_1b_grad_z(i) -= nucl_elec_dist_vec(3,j,i) * tmp
enddo
elseif( jast_1b_type .eq. 4 ) then ! add 1body-RSDFT Jastrow
! J(i) = - \sum_A [ -z_A r_iA erfc(mu*r_iA) + z_A exp(-(mu*r_iA)^2)/(mu*sqt_pi) ]
! mu = jast_mu_erf
mu = mu_erf
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
rij = nucl_elec_dist(j,i)
z = nucl_charge(j)
mur = mu * rij
tmp = -z * ( 1.d0 - derf(mur) ) / rij
jast_1b_grad_x(i) -= nucl_elec_dist_vec(1,j,i) * tmp
jast_1b_grad_y(i) -= nucl_elec_dist_vec(2,j,i) * tmp
jast_1b_grad_z(i) -= nucl_elec_dist_vec(3,j,i) * tmp
enddo
elseif( jast_1b_type .eq. 5 ) then ! add 1body-erf Jastrow
! J(i) = - \sum_A erf( alpha_A r_iA )
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_1berf_pen(j)
rij = nucl_elec_dist(j,i)
c = a * rij
tmp = 2.d0 * a * dexp(-c*c) / (dsqpi * rij)
jast_1b_grad_x(i) -= nucl_elec_dist_vec(1,j,i) * tmp
jast_1b_grad_y(i) -= nucl_elec_dist_vec(2,j,i) * tmp
jast_1b_grad_z(i) -= nucl_elec_dist_vec(3,j,i) * tmp
enddo
elseif( jast_1b_type .eq. 6 ) then ! add 1body-Gauss Jastrow
! J(i) = - \sum_A [ 1 - exp( -alpha_A r_iA^2 ) ]
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_1bGauss_pen(j)
rij = nucl_elec_dist(j,i)
tmp = 2.d0 * a * dexp(-a*rij*rij)
jast_1b_grad_x(i) -= nucl_elec_dist_vec(1,j,i) * tmp
jast_1b_grad_y(i) -= nucl_elec_dist_vec(2,j,i) * tmp
jast_1b_grad_z(i) -= nucl_elec_dist_vec(3,j,i) * tmp
enddo
endif
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, jast_1b_lapl, (elec_num_8) ]
BEGIN_DOC
! Laplacian of the Jastrow factor
END_DOC
include '../constants.F'
implicit none
integer :: i, j
double precision :: a, c, rij, tmp
double precision :: mu, mu_pi, mur, z
do i = 1, elec_num
jast_1b_lapl(i) = 0.d0
if( jast_1b_type .eq. 1 ) then ! add 1body-Slater Jastrow
! J(i) = - \sum_A c_A exp( - alpha_A r_iA )
! !DIR$ LOOP COUNT (100)
! do j = 1, nucl_num
! a = jast_1bslat_expo(j)
! c = jast_1bslat_coef(j)
! rij = nucl_elec_dist(j,i)
! tmp = c * a * dexp(-a*rij) * ( 2.d0/rij - a )
! jast_1b_lapl(i) -= tmp
! enddo
elseif( jast_1b_type .eq. 2 ) then ! add 1body-Tanh Jastrow
! J(i) = - \sum_A tanh(alpha_A r_iA )
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_1btanh_pen(j)
rij = nucl_elec_dist(j,i)
c = dtanh(a*rij)
tmp = 2.d0 * a * ( 1.d0 - c*c ) * ( 1.d0/rij - a*c )
jast_1b_lapl(i) -= tmp
enddo
elseif( jast_1b_type .eq. 3 ) then ! add 1body-Simple Jastrow
! J(i) = - \sum_A [ (alpha_A r_iA) / (1 + alpha_A r_iA) ]^2
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_pen(j)
rij = a * nucl_elec_dist(j,i)
tmp = 6.d0*a*a / (1.d0+rij*(4.d0+rij*(6.d0+rij*(4.d0+rij))))
jast_1b_lapl(i) -= tmp
enddo
elseif( jast_1b_type .eq. 4 ) then ! add 1body-RSDFT Jastrow
! J(i) = - \sum_A [ -z_A r_iA erfc(mu*r_iA) + z_A exp(-(mu*r_iA)^2)/(mu*sqt_pi) ]
! mu = jast_mu_erf
mu = mu_erf
mu_pi = mu / dsqpi
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
rij = nucl_elec_dist(j,i)
z = nucl_charge(j)
mur = mu * rij
tmp = -2.d0*z*(1.d0-derf(mur))/rij + 2.d0*z*mu_pi*dexp(-mur*mur)
jast_1b_lapl(i) -= tmp
enddo
elseif( jast_1b_type .eq. 5 ) then ! add 1body-erf Jastrow
! J(i) = - \sum_A erf( alpha_A r_iA )
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_1berf_pen(j)
rij = nucl_elec_dist(j,i)
c = a * rij
tmp = 4.d0 * dexp(-c*c) * (a/rij-a*a*a*rij) / dsqpi
jast_1b_lapl(i) -= tmp
enddo
elseif( jast_1b_type .eq. 6 ) then ! add 1body-Gauss Jastrow
! J(i) = - \sum_A [ 1 - exp( -alpha_A r_iA^2 ) ]
!DIR$ LOOP COUNT (100)
do j = 1, nucl_num
a = jast_1bGauss_pen(j)
rij = nucl_elec_dist(j,i)
c = a * rij * rij
tmp = 2.d0 * a * dexp(-c) * (3.d0-2.d0*a*c)
jast_1b_lapl(i) -= tmp
enddo
endif
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, jast_1b_grad_sq, (elec_num_8) ]
BEGIN_DOC
! square of the gradient of the 1-body Jastrow
END_DOC
implicit none
integer :: i
do i = 1, elec_num
jast_1b_grad_sq(i) = jast_1b_grad_x(i) * jast_1b_grad_x(i) &
+ jast_1b_grad_y(i) * jast_1b_grad_y(i) &
+ jast_1b_grad_z(i) * jast_1b_grad_z(i)
enddo
END_PROVIDER
! ---