!recursive double precision function Boys(x,n) result(res) ! implicit none ! include 'constants.F' ! ! real, intent(in) :: x ! integer, intent(in) :: n ! ! ASSERT (x > 0.) ! if (n == 0) then ! res = sqrt(pi/(4.*x))*erf(sqrt(x)) ! else ! res = (dble(2*n-1) * Boys(x,(n-1)) - exp(-x) )/(2.*x) ! endif ! !end function double precision function binom(k,n) implicit none integer, intent(in) :: k,n double precision, save :: memo(0:20,0:20) !DEC$ ATTRIBUTES ALIGN : 32 :: memo integer, save :: ifirst double precision :: fact if (ifirst == 0) then ifirst = 1 integer :: i,j do j=0,20 do i=0,j memo(i,j) = fact(j)/(fact(i)*fact(j-i)) enddo enddo endif if (n<20) then binom = memo(k,n) else binom=fact(n)/(fact(k)*fact(n-k)) endif end double precision function fact2(n) implicit none integer :: n double precision, save :: memo(100) integer, save :: memomax = 1 ASSERT (mod(n,2) /= 0) memo(1) = 1.d0 if (n<2) then fact2 = 1.d0 else if (n<=memomax) then fact2 = memo(n) else integer :: i do i=memomax+2,min(n,99),2 memo(i) = memo(i-2)* float(i) enddo memomax = min(n,99) fact2 = memo(memomax) do i=101,n,2 fact2 *= float(i) enddo endif end function double precision function fact(n) implicit none integer :: n double precision, save :: memo(0:100) integer, save :: memomax = 1 memo(0) = 1.d0 memo(1) = 1.d0 if (n<=memomax) then fact = memo(n) else integer :: i do i=memomax+1,min(n,100) memo(i) = memo(i-1)*float(i) enddo memomax = min(n,100) fact = memo(memomax) do i=101,n fact *= float(i) enddo endif end function double precision function rintgauss(n) implicit none include 'constants.F' integer :: n rintgauss = dsqrt_pi if ( n == 0 ) then return else if ( n == 1 ) then rintgauss = 0. else if ( mod(n,2) == 1) then rintgauss = 0. else double precision :: fact2 rintgauss = rintgauss/(2.**(n/2)) rintgauss = rintgauss * fact2(n-1) endif end function double precision function goverlap(gamA,gamB,nA) implicit none real :: gamA, gamB integer :: nA(3) double precision :: gamtot gamtot = gamA+gamB goverlap=1.0 integer :: l double precision :: rintgauss do l=1,3 goverlap = goverlap * rintgauss(nA(l)+nA(l))/ (gamtot**(0.5+float(nA(l)))) enddo end function