Multideterminant corrected. Bug in MPI?

This commit is contained in:
Anthony Scemama 2010-05-28 18:23:27 +02:00
parent f19db06333
commit 0d69dec304
4 changed files with 311 additions and 37 deletions

View File

@ -38,15 +38,25 @@ BEGIN_PROVIDER [ real, density_alpha_value_p ]
enddo
! TODO vectorization
integer :: k,j,l
integer :: k,j,l, ik, il
real :: buffer
PROVIDE det
PROVIDE elec_alpha_num
do k=1,det_num
do l=1,det_num
buffer = 0.
do i=1,elec_alpha_num-mo_closed_num
buffer += mo_value_p(det(i,k,1))*mo_value_p(det(i,l,1))
enddo
density_alpha_value_p += det_coef(k)*det_coef(l)*buffer
if (det_exc(k,l,3) == 0) then
buffer = 0.
do i=1,elec_alpha_num-mo_closed_num
buffer += mo_value_p(det(i,k,1))*mo_value_p(det(i,l,1))
enddo
density_alpha_value_p += det_coef(k)*det_coef(l)*buffer
else if ( (det_exc(k,l,3) == 1).and.(det_exc(k,l,1) == 1) ) then
call get_single_excitation(k,l,ik,il,1)
buffer = mo_value_p(ik)*mo_value_p(il)
density_alpha_value_p += det_coef(k)*det_coef(l)*buffer
endif
enddo
enddo
@ -65,15 +75,23 @@ BEGIN_PROVIDER [ real, density_beta_value_p ]
enddo
! TODO vectorization
integer :: k,j,l
integer :: k,j,l, ik, il
real :: buffer
PROVIDE det
PROVIDE elec_beta_num
do k=1,det_num
do l=1,det_num
buffer = 0.
do i=1,elec_beta_num-mo_closed_num
buffer += mo_value_p(det(i,k,2))*mo_value_p(det(i,l,2))
enddo
density_beta_value_p += det_coef(k)*det_coef(l)*buffer
if (det_exc(k,l,3) == 0) then
buffer = 0.
do i=1,elec_beta_num-mo_closed_num
buffer += mo_value_p(det(i,k,2))*mo_value_p(det(i,l,2))
enddo
density_beta_value_p += det_coef(k)*det_coef(l)*buffer
else if ( (det_exc(k,l,3) == 1).and.(det_exc(k,l,2) == 1) ) then
call get_single_excitation(k,l,ik,il,2)
buffer = mo_value_p(ik)*mo_value_p(il)
density_beta_value_p += det_coef(k)*det_coef(l)*buffer
endif
enddo
enddo
@ -98,9 +116,12 @@ BEGIN_PROVIDER [ double precision, density_alpha_grad_p, (3) ]
density_alpha_grad_p(3) += 2.*mo_grad_p(i,3)*mo_value_p(i)
enddo
! TODO vectorization
! TODO Faux !! => Regles de Slater
integer :: k,j,l
real :: buffer(3)
if (det_num > 1) then
call abrt(irp_here,'Need to implement Slater rules for gradient')
endif
do k=1,det_num
do l=1,det_num
buffer(1) = 0.
@ -142,6 +163,9 @@ BEGIN_PROVIDER [ double precision, density_beta_grad_p, (3) ]
enddo
! TODO vectorization
if (det_num > 1) then
call abrt(irp_here,'Need to implement Slater rules for gradient')
endif
integer :: k,j,l
real :: buffer(3)
do k=1,det_num
@ -189,6 +213,9 @@ BEGIN_PROVIDER [ double precision, density_alpha_lapl_p ]
! TODO vectorization
integer :: k,j,l
real :: buffer
if (det_num > 1) then
call abrt(irp_here,'Need to implement Slater rules for gradient')
endif
do k=1,det_num
do l=1,det_num
buffer = 0.
@ -225,6 +252,9 @@ BEGIN_PROVIDER [ double precision, density_beta_lapl_p ]
density_beta_lapl_p *= 2.
! TODO vectorization
if (det_num > 1) then
call abrt(irp_here,'Need to implement Slater rules for laplacian')
endif
integer :: k,j,l
real :: buffer
do k=1,det_num

View File

@ -33,4 +33,168 @@ BEGIN_PROVIDER [ integer, det, (elec_alpha_num-mo_closed_num,det_num,2) ]
END_PROVIDER
BEGIN_PROVIDER [ integer, det_exc, (det_num, det_num, 3) ]
implicit none
BEGIN_DOC
! Degree of excitation between two determinants. The sign is the phase.
END_DOC
integer :: p
do p=1,2
integer :: k, l
do l=1,det_num
det_exc(l,l,p) = 0
do k=l+1,det_num
det_exc(k,l,p) = 0
! Excitation degree
integer :: i, j
do i=1,elec_num_2(p)-mo_closed_num
logical :: found
found = .False.
do j=1,elec_num_2(p)-mo_closed_num
if (det(j,l,p) == det(i,k,p)) then
found = .True.
exit
endif
enddo
if (.not.found) then
det_exc(k,l,p) += 1
endif
enddo
det_exc(l,k,p) = det_exc(k,l,p)
enddo
enddo
enddo
do l=1,det_num
do k=l+1,det_num
det_exc(k,l,3) = det_exc(k,l,1) + det_exc(k,l,2)
enddo
enddo
! Phase
do p=1,2
do i=mo_closed_num,mo_num
integer :: det_pos(det_num)
do k=1,det_num
det_pos(k) = 0
do j=1,elec_num_2(p)-mo_closed_num
if (det(j,k,p) == i) then
det_pos(k) = j
endif
enddo
enddo
do k=1,det_num
do l=k+1,det_num
det_exc(k,l,3) *= -2*mod( (det_pos(k)+det_pos(l)), 2 )+1
enddo
enddo
enddo
enddo
do l=1,det_num
do k=l+1,det_num
det_exc(l,k,3) = det_exc(k,l,3)
enddo
enddo
END_PROVIDER
subroutine get_single_excitation(k,l,m,n,p)
implicit none
integer, intent(in) :: k, l ! determinant indices
integer, intent(out) :: m, n ! m->n excitation
integer, intent(in) :: p ! spin
logical :: found
integer :: i,j
m=0
n=0
do j=1,elec_num_2(p)-mo_closed_num
found = .False.
do i=1,elec_num_2(p)-mo_closed_num
if (det(j,k,p) == det(i,l,p)) then
found = .True.
exit
endif
enddo
if (.not.found) then
m = det(j,k,p)
exit
endif
enddo
do i=1,elec_num_2(p)-mo_closed_num
found = .False.
do j=1,elec_num_2(p)-mo_closed_num
if (det(i,k,p) == det(i,l,p)) then
found = .True.
exit
endif
enddo
if (.not.found) then
n = det(i,l,p)
exit
endif
enddo
end
subroutine get_double_excitation(k,l,m,n,r,s,p)
implicit none
integer, intent(in) :: k, l ! determinant indices
integer, intent(out) :: m, n ! m->n excitation
integer, intent(out) :: r, s ! r->s excitation
integer, intent(in) :: p ! spin
logical :: found
integer :: i,j
m=0
n=0
r=0
s=0
do j=1,elec_num_2(p)-mo_closed_num
found = .False.
do i=1,elec_num_2(p)-mo_closed_num
if (det(j,k,p) == det(i,l,p)) then
found = .True.
exit
endif
enddo
if (.not.found) then
if (m == 0) then
m = det(j,k,p)
else
r = det(j,k,p)
exit
endif
endif
enddo
do i=1,elec_num_2(p)-mo_closed_num
found = .False.
do j=1,elec_num_2(p)-mo_closed_num
if (det(i,k,p) == det(i,l,p)) then
found = .True.
exit
endif
enddo
if (.not.found) then
if (n == 0) then
n = det(i,l,p)
else
s = det(i,l,p)
exit
endif
endif
enddo
end

View File

@ -11,6 +11,7 @@ BEGIN_PROVIDER [ real, eplf_gamma ]
!eplf_gamma = (4./(3.*N)*pi*density_value_p)**(2./3.) * eps
eplf_gamma = density_value_p * eps
!eplf_gamma = 1.e10
!eplf_gamma = 1.e5
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_eplf_integral_matrix, (ao_num,ao_num) ]
@ -79,41 +80,116 @@ END_PROVIDER
do j=1,mo_closed_num
do i=1,mo_closed_num
eplf_up_up += 2.d0*mo_value_p(i)* ( &
eplf_up_up += 2.d0* mo_value_p(i)* ( &
mo_value_p(i)*mo_eplf_integral_matrix(j,j) - &
mo_value_p(j)*mo_eplf_integral_matrix(i,j) )
eplf_up_dn += 2.d0*mo_value_p(j)**2 * &
mo_eplf_integral_matrix(i,i)
eplf_up_dn += 2.d0* mo_value_p(i)*mo_value_p(i)* &
mo_eplf_integral_matrix(j,j)
enddo
enddo
integer :: k,l,m,n,p
integer :: ik,il,jk,jl
double precision :: ckl
double precision :: phase
integer :: exc
PROVIDE det
PROVIDE elec_num_2
do k=1,det_num
do l=1,det_num
ckl = det_coef(k)*det_coef(l)
do p=1,2
do m=1,elec_num_2(p)-mo_closed_num
j = det(m,k,p)
do n=1,elec_num_2(p)-mo_closed_num
i = det(n,l,p)
eplf_up_up += ckl*mo_value_p(i)* ( &
mo_value_p(i)*mo_eplf_integral_matrix(j,j) - &
mo_value_p(j)*mo_eplf_integral_matrix(i,j) )
enddo
enddo
enddo
exc = det_exc(k,l,3)
do m=1,elec_beta_num-mo_closed_num
j = det(m,k,2)
do n=1,elec_alpha_num-mo_closed_num
i = det(n,k,1)
eplf_up_dn += ckl * ( mo_value_p(i)**2 * mo_eplf_integral_matrix(j,j) &
+ mo_value_p(j)**2 * mo_eplf_integral_matrix(i,i) )
enddo
enddo
if ( exc < 0 ) then
phase = -0.5d0
exc = -exc
else
phase = 0.5d0
endif
if ( exc == 0 ) then
! Sum over all alpha-alpha and beta-beta interactions
do p=1,2
do m=1,elec_num_2(p)-mo_closed_num
jk = det(m,k,p)
jl = det(m,l,p)
do n=1,elec_num_2(p)-mo_closed_num
ik = det(n,k,p)
il = det(n,l,p)
eplf_up_up += phase*ckl*mo_value_p(ik)* ( &
mo_value_p(il)*mo_eplf_integral_matrix(jk,jl) - &
mo_value_p(jl)*mo_eplf_integral_matrix(jk,il) )
enddo
enddo
enddo
! Sum over all alpha-beta interactions
do m=1,elec_beta_num-mo_closed_num
jk = det(m,k,2)
jl = det(m,l,2)
do n=1,elec_alpha_num-mo_closed_num
ik = det(n,k,1)
il = det(n,l,1)
eplf_up_dn += phase*ckl * ( mo_value_p(ik)*mo_value_p(il) * mo_eplf_integral_matrix(jk,jl) &
+ mo_value_p(jk)*mo_value_p(jl) * mo_eplf_integral_matrix(ik,il) )
enddo
enddo
else if ( exc == 1 ) then
do p=1,2
if ( det_exc(k,l,p) == 1 ) then
! Sum over only the sigma-sigma interactions involving the excitation
call get_single_excitation(k,l,ik,il,p)
do m=1,elec_num_2(p)-mo_closed_num
jk = det(m,k,p)
jl = det(m,l,p)
eplf_up_up += phase*ckl*mo_value_p(ik)* ( &
mo_value_p(il)*mo_eplf_integral_matrix(jk,jl) - &
mo_value_p(jl)*mo_eplf_integral_matrix(jk,il) )
enddo
! Sum over only the sigma-(sigma_bar) interactions involving the excitation
integer :: p2
p2 = 1+mod(p,2)
do m=1,elec_num_2(p2)-mo_closed_num
jk = det(m,k,p2)
jl = det(m,l,p2)
eplf_up_dn += phase*ckl * ( mo_value_p(ik)*mo_value_p(il) * mo_eplf_integral_matrix(jk,jl) &
+ mo_value_p(jk)*mo_value_p(jl) * mo_eplf_integral_matrix(ik,il) )
enddo
endif
enddo
else if (exc == 2) then
if ( ( det_exc(k,l,1) == 2 ).or.( det_exc(k,l,2) == 2 ) ) then
! Consider only the double excitations of same-spin electrons
if ( det_exc(k,l,1) == 2 ) then
call get_double_excitation(k,l,ik,jk,il,jl,1)
else if ( det_exc(k,l,2) == 2 ) then
call get_double_excitation(k,l,ik,jk,il,jl,2)
endif
eplf_up_up += phase*ckl*mo_value_p(ik)* ( &
mo_value_p(il)*mo_eplf_integral_matrix(jk,jl) - &
mo_value_p(jl)*mo_eplf_integral_matrix(jk,il) )
else if ( det_exc(k,l,1) == 1 ) then
! Consider only the double excitations of opposite-spin electrons
call get_single_excitation(k,l,ik,jk,1)
call get_single_excitation(k,l,il,jl,2)
eplf_up_dn += phase*ckl * ( mo_value_p(ik)*mo_value_p(il) * mo_eplf_integral_matrix(jk,jl) &
+ mo_value_p(jk)*mo_value_p(jl) * mo_eplf_integral_matrix(ik,il) )
endif
endif
enddo
enddo

View File

@ -100,7 +100,7 @@ BEGIN_PROVIDER [ real, grid_$X, (grid_x_num,grid_y_num,grid_z_num) ]
do iy=1,grid_y_num
point(2) = grid_origin(2)+(iy-1)*grid_step(2)
do ix=1,grid_x_num
icount = icount-1
icount -= 1
if (icount == mpi_rank) then
point(1) = grid_origin(1)+(ix-1)*grid_step(1)
TOUCH point
@ -116,7 +116,7 @@ BEGIN_PROVIDER [ real, grid_$X, (grid_x_num,grid_y_num,grid_z_num) ]
IRP_IF MPI
integer :: dim, ierr
do iz=1,grid_z_num
real :: buffer(grid_x_num*grid_y_num)
real :: buffer(grid_x_num*grid_y_num+1)
icount = 0
do iy=1,grid_y_num
do ix=1,grid_x_num
@ -127,6 +127,10 @@ BEGIN_PROVIDER [ real, grid_$X, (grid_x_num,grid_y_num,grid_z_num) ]
dim = grid_x_num * grid_y_num
call MPI_REDUCE(buffer,grid_$X(1,1,iz),dim,mpi_real, &
mpi_sum,0,MPI_COMM_WORLD,ierr)
if (ierr /= MPI_SUCCESS) then
call abrt(irp_here,'Unable to fetch buffer')
endif
call barrier
enddo
IRP_ENDIF