mirror of
https://github.com/triqs/dft_tools
synced 2024-12-23 04:43:42 +01:00
336 lines
12 KiB
Python
336 lines
12 KiB
Python
|
|
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
|
|
from types import *
|
|
#from triqs_dft_tools.U_matrix import *
|
|
from U_matrix import *
|
|
from pytriqs.gf import *
|
|
#from hubbard_I import gf_hi_fullu, sigma_atomic_fullu
|
|
import pytriqs.utility.mpi as mpi
|
|
from itertools import izip
|
|
import numpy
|
|
import copy
|
|
|
|
class Solver:
|
|
"""
|
|
Hartree-Fock Solver
|
|
"""
|
|
|
|
# initialisation:
|
|
def __init__(self, beta, l, n_msb=1025, use_spin_orbit=False, Nmoments=5, dudarev=False):
|
|
|
|
self.name = "Hartree-Fock"
|
|
self.beta = beta
|
|
self.l = l
|
|
self.Nmsb = n_msb
|
|
self.UseSpinOrbit = use_spin_orbit
|
|
self.Converged = False
|
|
self.Nspin = 2
|
|
self.Nmoments=Nmoments
|
|
|
|
self.dudarev = dudarev
|
|
|
|
assert use_spin_orbit == False, "Spin-orbit is not implemented"
|
|
|
|
self.Nlm = 2*l+1
|
|
if (use_spin_orbit):
|
|
# no blocks!
|
|
self.gf_struct = [ ('ud', range(2*self.Nlm)) ]
|
|
else:
|
|
# up/down blocks:
|
|
self.gf_struct = [ ('up', range(self.Nlm)), ('down', range(self.Nlm)) ]
|
|
|
|
# construct Greens functions:
|
|
self.a_list = [a for a,al in self.gf_struct]
|
|
glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
|
|
self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
|
|
self.G_Old = self.G.copy()
|
|
self.G0 = self.G.copy()
|
|
self.Sigma = self.G.copy()
|
|
self.Sigma_Old = self.G.copy()
|
|
|
|
|
|
|
|
def solve(self, U_int, J_hund, T=None, verbosity=0, Iteration_Number=1, Test_Convergence=0.0001):
|
|
"""Calculation of the impurity Greens function using Hubbard-I"""
|
|
|
|
if self.Converged :
|
|
mpi.report("Solver %(name)s has already converged: SKIPPING"%self.__dict__)
|
|
return
|
|
|
|
if mpi.is_master_node():
|
|
self.verbosity = verbosity
|
|
else:
|
|
self.verbosity = 0
|
|
|
|
#self.Nmoments = 5
|
|
|
|
ur,ujmn,umn=self.__set_umatrix(U=U_int,J=J_hund,T=T)
|
|
|
|
|
|
M = [x for x in self.G.mesh]
|
|
self.zmsb = numpy.array([x for x in M],numpy.complex_)
|
|
|
|
# # for the tails:
|
|
# tailtempl={}
|
|
# for sig,g in self.G:
|
|
# tailtempl[sig] = copy.deepcopy(g.tail)
|
|
# for i in range(9): tailtempl[sig][i] *= 0.0
|
|
|
|
# self.__save_eal('eal.dat',Iteration_Number)
|
|
|
|
# mpi.report( "Starting Fortran solver %(name)s"%self.__dict__)
|
|
|
|
self.Sigma_Old <<= self.Sigma
|
|
self.G_Old <<= self.G
|
|
|
|
# # call the fortran solver:
|
|
# temp = 1.0/self.beta
|
|
# gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
|
|
# zmsb=self.zmsb, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = self.verbosity)
|
|
|
|
#self.sig = sigma_atomic_fullu(gf=self.gf,e0f=self.eal,zmsb=self.zmsb,ns=self.Nspin,nlm=self.Nlm)
|
|
def print_matrix(m):
|
|
for row in m:
|
|
print ''.join(map("{0:12.7f}".format, row))
|
|
|
|
|
|
# Hartree-Fock solver
|
|
self.Sigma.zero()
|
|
dm = self.G.density()
|
|
if mpi.is_master_node():
|
|
# print
|
|
# print " Reduced U-matrix:"
|
|
# print " U:"
|
|
# print_matrix(ujmn)
|
|
# print " Up:"
|
|
# print_matrix(umn)
|
|
#
|
|
## sig_test = {bl: numpy.zeros((self.Nlm, self.Nlm)) for bl in dm}
|
|
# sig_test = {}
|
|
# sig_test['up'] = numpy.dot(umn, dm['up'].real) + numpy.dot(ujmn, dm['down'].real)
|
|
# sig_test['down'] = numpy.dot(umn, dm['down'].real) + numpy.dot(ujmn, dm['up'].real)
|
|
# print " Sigma test:"
|
|
# print_matrix(sig_test['up'])
|
|
print
|
|
print " Density matrix (up):"
|
|
print_matrix(dm['up'])
|
|
print
|
|
print " Density matrix (down):"
|
|
print_matrix(dm['down'])
|
|
|
|
if self.dudarev:
|
|
Ueff = U_int - J_hund
|
|
corr_energy = 0.0
|
|
dft_dc = 0.0
|
|
for bl1 in dm:
|
|
# (U - J) * (1/2 - n)
|
|
self.Sigma[bl1] << Ueff * (0.5 * numpy.identity(self.Nlm) - dm[bl1])
|
|
# 1/2 (U - J) * \sum_{\sig} [\sum_{m} n_{m,m \sig} - \sum_{m1,m2} n_{m1,m2 \sig} n_{m2,m1 \sig}]
|
|
corr_energy += 0.5 * Ueff * (dm[bl1].trace() - (dm[bl1]*dm[bl1].conj()).sum()).real
|
|
# V[n] * n^{\dagger}
|
|
dft_dc += (self.Sigma[bl1](0) * dm[bl1].conj()).sum().real
|
|
|
|
else:
|
|
# !!!!!
|
|
# !!!!! Mind the order of indices in the 4-index matrix!
|
|
# !!!!!
|
|
for il1 in xrange(self.Nlm):
|
|
for il2 in xrange(self.Nlm):
|
|
for il3 in xrange(self.Nlm):
|
|
for il4 in xrange(self.Nlm):
|
|
for bl1 in dm:
|
|
for bl2 in dm:
|
|
self.Sigma[bl1][il1, il2] += ur[il1, il3, il2, il4] * dm[bl2][il3, il4]
|
|
if bl1 == bl2:
|
|
self.Sigma[bl1][il1, il2] -= ur[il1, il3, il4, il2] * dm[bl1][il3, il4]
|
|
|
|
if mpi.is_master_node() and self.verbosity > 0:
|
|
print
|
|
print " Sigma (up):"
|
|
print_matrix(self.Sigma['up'](0).real)
|
|
print
|
|
print " Sigma (down):"
|
|
print_matrix(self.Sigma['down'](0).real)
|
|
# if (self.verbosity==0):
|
|
# # No fortran output, so give basic results here
|
|
# mpi.report("Atomic occupancy in Hubbard I Solver : %s"%self.atocc)
|
|
# mpi.report("Atomic magn. mom. in Hubbard I Solver : %s"%self.atmag)
|
|
|
|
# transfer the data to the GF class:
|
|
if (self.UseSpinOrbit):
|
|
nlmtot = self.Nlm*2 # only one block in this case!
|
|
else:
|
|
nlmtot = self.Nlm
|
|
|
|
# M={}
|
|
# isp=-1
|
|
# for a,al in self.gf_struct:
|
|
# isp+=1
|
|
# M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
|
|
# for i in range(min(self.Nmoments,8)):
|
|
# tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]
|
|
#
|
|
# #glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb, data =M[a], tail =self.tailtempl[a])
|
|
# # for a,al in self.gf_struct]
|
|
# glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
|
|
# self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
|
|
#
|
|
# self.__copy_Gf(self.G,M,tailtempl)
|
|
#
|
|
# # Self energy:
|
|
# self.G0 <<= iOmega_n
|
|
#
|
|
# M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
|
|
# self.G0 -= M
|
|
# self.Sigma <<= self.G0 - inverse(self.G)
|
|
#
|
|
# # invert G0
|
|
# self.G0.invert()
|
|
|
|
def test_distance(G1,G2, dist) :
|
|
def f(G1,G2) :
|
|
#print abs(G1.data - G2.data)
|
|
dS = max(abs(G1.data - G2.data).flatten())
|
|
aS = max(abs(G1.data).flatten())
|
|
if mpi.is_master_node():
|
|
print " Distances:", dS, " vs ", aS * dist
|
|
return dS <= aS*dist
|
|
return reduce(lambda x,y : x and y, [f(g1,g2) for (i1,g1),(i2,g2) in izip(G1,G2)])
|
|
|
|
mpi.report("\nChecking Sigma for convergence...\nUsing tolerance %s"%Test_Convergence)
|
|
self.Converged = test_distance(self.Sigma,self.Sigma_Old,Test_Convergence)
|
|
|
|
if self.Converged :
|
|
mpi.report("Solver HAS CONVERGED")
|
|
else :
|
|
mpi.report("Solver has not yet converged")
|
|
|
|
return corr_energy, dft_dc
|
|
|
|
|
|
def GF_realomega(self, ommin, ommax, N_om, U_int, J_hund, T=None, verbosity=0, broadening=0.01):
|
|
"""Calculates the GF and spectral function on the real axis."""
|
|
|
|
delta_om = (ommax-ommin)/(1.0*(N_om-1))
|
|
|
|
omega = numpy.zeros([N_om],numpy.complex_)
|
|
|
|
ur,umn,ujmn=self.__set_umatrix(U=U_int,J=J_hund,T=T)
|
|
|
|
for i in range(N_om):
|
|
omega[i] = ommin + delta_om * i + 1j * broadening
|
|
|
|
tailtempl={}
|
|
for sig,g in self.G:
|
|
tailtempl[sig] = copy.deepcopy(g.tail)
|
|
for i in range(9): tailtempl[sig][i] *= 0.0
|
|
|
|
temp = 1.0/self.beta
|
|
gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
|
|
zmsb=omega, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = verbosity)
|
|
|
|
# transfer the data to the GF class:
|
|
if (self.UseSpinOrbit):
|
|
nlmtot = self.Nlm*2 # only one block in this case!
|
|
else:
|
|
nlmtot = self.Nlm
|
|
|
|
M={}
|
|
isp=-1
|
|
for a,al in self.gf_struct:
|
|
isp+=1
|
|
M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
|
|
for i in range(min(self.Nmoments,8)):
|
|
tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]
|
|
|
|
#glist = lambda : [ GfReFreq(indices = al, window = (ommin, ommax), n_points = N_om, data = M[a], tail = self.tailtempl[a])
|
|
# for a,al in self.gf_struct] # Indices for the upfolded G
|
|
glist = lambda : [ GfReFreq(indices = al, window = (ommin, ommax), n_points = N_om) for a,al in self.gf_struct]
|
|
self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
|
|
|
|
self.__copy_Gf(self.G,M,tailtempl)
|
|
|
|
# Self energy:
|
|
self.G0 = self.G.copy()
|
|
self.Sigma = self.G.copy()
|
|
self.G0 <<= Omega + 1j*broadening
|
|
|
|
M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
|
|
self.G0 -= M
|
|
self.Sigma <<= self.G0 - inverse(self.G)
|
|
self.Sigma.note='ReFreq' # This is important for the put_Sigma routine!!!
|
|
|
|
#sigmamat = sigma_atomic_fullu(gf=gf,e0f=self.ealmat,zmsb=omega,nlm=self.Nlm,ns=self.Nspin)
|
|
|
|
#return omega,gf,sigmamat
|
|
|
|
|
|
def __save_eal(self,Filename,it):
|
|
f=open(Filename,'a')
|
|
f.write('\neff. atomic levels, Iteration %s\n'%it)
|
|
for i in range(self.Nlm*self.Nspin):
|
|
for j in range(self.Nlm*self.Nspin):
|
|
f.write("%10.6f %10.6f "%(self.ealmat[i,j].real,self.ealmat[i,j].imag))
|
|
f.write("\n")
|
|
f.close()
|
|
|
|
def __copy_Gf(self,G,data,tail):
|
|
""" Copies data and tail to Gf object GF """
|
|
for s,g in G:
|
|
g.data[:,:,:]=data[s][:,:,:]
|
|
for imom in range(1,min(self.Nmoments,8)):
|
|
g.tail.data[1+imom,:,:]=tail[s][imom]
|
|
|
|
|
|
def set_atomic_levels(self,eal):
|
|
""" Helps to set correctly the variables for the atomic levels from a dictionary."""
|
|
|
|
assert (type(eal)==DictType), "Give a dictionary to set_atomic_levels!"
|
|
|
|
cnt = 0
|
|
self.ealmat[:,:] *= 0.0
|
|
|
|
for ind in eal:
|
|
self.Eff_Atomic_Levels[ind] = copy.deepcopy(eal[ind])
|
|
|
|
if self.UseSpinOrbit:
|
|
for ii in range(self.Nlm*2):
|
|
for jj in range(self.Nlm*2):
|
|
self.ealmat[ii,jj] = self.Eff_Atomic_Levels[ind][ii,jj]
|
|
else:
|
|
for ii in range(self.Nlm):
|
|
for jj in range(self.Nlm):
|
|
self.ealmat[cnt*self.Nlm + ii,cnt*self.Nlm + jj] = self.Eff_Atomic_Levels[ind][ii,jj]
|
|
|
|
cnt += 1
|
|
|
|
|
|
def __set_umatrix(self,U,J,T=None):
|
|
# U matrix:
|
|
# l = (Nlm-1)/2
|
|
# If T is specified, it is used to transform the Basis set
|
|
Umat = U_matrix(l=self.l, U_int=U, J_hund=J, basis='cubic', T=T)
|
|
U, Up = reduce_4index_to_2index(Umat)
|
|
|
|
return Umat, U, Up
|