3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 03:33:50 +01:00
dft_tools/doc/reference/c++/arrays/concepts.rst
Michel Ferrero f7fad85fca Iteration over the doc
This is an iteration over the doc mainly thank to Priyanka.
I fixed another couple of details on the way.
2013-12-31 14:22:00 +01:00

247 lines
9.0 KiB
ReStructuredText

Concepts
=============================================================
In this section, we define the basic concepts (in the C++ sense)
related to the multidimentional arrays.
Readers not familiar with the idea of concepts in programming can skip this section,
which is however needed for a more advanced usage of the library.
A multidimentional array is basically a function of some indices, typically integers taken in a specific domain,
returning the element type of the array, e.g. int, double.
Indeed, if a is an two dimensionnal array of int,
it is expected that a(i,j) returns an int or a reference to an int, for i,j integers in some domain.
We distinguish two separate notions based on whether this function is `pure`
or not, i.e. whether one can or not modify a(i,j).
* An `Immutable` array is simply a pure function on the domain of definition.
a(i,j) returns a int, or a int const &, that can not be modified (hence immutable).
* A `Mutable` array is an Immutable array that *can* be modified. The non-const
object returns a reference, e.g. a(i,j) can return a int &. Typically this is
a piece of memory, with a integer coordinate system on it.
The main point here is that an `Immutable` array is a much more general notion:
a formal expression consisting of arrays (e.g. A + 2*B) models this concept,
but not the `Mutable` one.
Most algorithms only use the `Immutable` array notion, where they are pure
(mathematical) functions that return something depending on the value of an
object, without side effects.
.. _ImmutableCuboidArray:
ImmutableCuboidArray
----------------------------
* **Purpose** :
The most abstract definition of something that behaves like an immutable array on a cuboid domain.
* it has a cuboid domain (hence a rank).
* it can be evaluated on any value of the indices in the domain
* NB : It does not need to be stored in memory. For example, a formal expression models this concept.
* **Definition** ([...] denotes something optional).
+-------------------------------------------------------+-------------------------------------------------------------------------+
| Members | Comment |
+=======================================================+=========================================================================+
| domain_type == cuboid_domain<Rank> | Type of the domain, with rank `Rank` |
+-------------------------------------------------------+-------------------------------------------------------------------------+
| domain_type [const &] domain() const | Access to the domain. |
+-------------------------------------------------------+-------------------------------------------------------------------------+
| value_type | Type of the element of the array |
+-------------------------------------------------------+-------------------------------------------------------------------------+
| value_type [const &] operator() (size_t ... i) const | Evaluation. Must have exactly rank argument (checked at compiled time). |
+-------------------------------------------------------+-------------------------------------------------------------------------+
* **Examples** :
* array, array_view, matrix, matrix_view, vector, vector_view.
* array expressions.
.. _MutableCuboidArray:
MutableCuboidArray
-------------------------
* **Purpose** : An array where the data can be modified.
* **Refines** : :ref:`ImmutableCuboidArray`.
* **Definition**
+----------------------------------------------+-----------------------------------------------------------------------------+
| Members | Comment |
+==============================================+=============================================================================+
| value_type & operator() (size_t ... i) | Element access: Must have exactly rank argument (checked at compiled time). |
+----------------------------------------------+-----------------------------------------------------------------------------+
* **Examples** :
* array, array_view, matrix, matrix_view, vector, vector_view.
.. _ImmutableArray:
ImmutableArray
-------------------------------------------------------------------
* Refines :ref:`ImmutableCuboidArray`
* If X is the type:
* ImmutableArray<A> == true_type
NB : this traits marks the fact that X belongs to the Array algebra.
.. _ImmutableMatrix:
ImmutableMatrix
-------------------------------------------------------------------
* Refines :ref:`ImmutableCuboidArray`
* If A is the type :
* ImmutableMatrix<A> == true_type
* A::domain_type::rank == 2
NB : this traits marks the fact that X belongs to the MatrixVector algebra.
.. _ImmutableVector:
ImmutableVector
-------------------------------------------------------------------
* Refines :ref:`ImmutableCuboidArray`
* If A is the type :
* ImmutableMatrix<A> == true_type
* A::domain_type::rank == 1
NB : this traits marks the fact that X belongs to the MatrixVector algebra.
.. _MutableArray:
MutableArray
-------------------------------------------------------------------
* Refines :ref:`MutableCuboidArray`
* If A is the type :
* ImmutableArray<A> == true_type
* MutableArray<A> == true_type
NB : this traits marks the fact that X belongs to the Array algebra.
.. _MutableMatrix:
MutableMatrix
-------------------------------------------------------------------
* Refines :ref:`MutableCuboidArray`
* If A is the type :
* ImmutableMatrix<A> == true_type
* MutableMatrix<A> == true_type
* A::domain_type::rank ==2
NB : this traits marks the fact that X belongs to the MatrixVector algebra.
.. _MutableVector:
MutableVector
-------------------------------------------------------------------
* Refines :ref:`MutableCuboidArray`
* If A is the type :
* ImmutableMatrix<A> == true_type
* MutableMatrix<A> == true_type
* A::domain_type::rank ==1
NB : this traits marks the fact that X belongs to the MatrixVector algebra.
Why concepts ? [Advanced]
-----------------------------
Why is it useful to define these concepts ?
Simply because of lot of the library algorithms only use these concepts,
and such algorithms can be used for any array or custom class that models
the concept.
For example:
* Problem: we want to quickly assemble a small class to store a diagonal matrix.
We want this class to operate with other matrices, e.g. be part of an
expression, be printed, etc.
However, we only want to store the diagonal element.
* A simple solution :
.. compileblock ::
#include <triqs/arrays.hpp>
#include <iostream>
namespace triqs { namespace arrays { // better to put it in this namespace for ADL...
template<typename T> class immutable_diagonal_matrix_view {
array_view<T,1> data; // the diagonal stored as a 1d array
public:
immutable_diagonal_matrix_view(array_view<T,1> v) : data (v) {} // constructor
// the ImmutableMatrix concept
typedef indexmaps::cuboid::domain_t<2> domain_type;
domain_type domain() const { auto s = data.shape()[0]; return {s,s}; }
typedef T value_type;
T operator()(size_t i, size_t j) const { return (i==j ? data(i) : 0);} // just kronecker...
friend std::ostream & operator<<(std::ostream & out, immutable_diagonal_matrix_view const & d)
{return out<<"diagonal_matrix "<<d.data;}
};
// Marking this class as belonging to the Matrix & Vector algebra.
template<typename T> struct ImmutableMatrix<immutable_diagonal_matrix_view<T>> : std::true_type{};
}}
/// TESTING
using namespace triqs::arrays;
int main(int argc, char **argv) {
auto a = array<int,1> {1,2,3,4};
auto d = immutable_diagonal_matrix_view<int>{a};
std::cout << "domain = " << d.domain()<< std::endl;
std::cout << "d = "<< d << std::endl;
std::cout << "2*d = "<< make_matrix(2*d) << std::endl;
std::cout << "d*d = "<< matrix<int>(d*d) << std::endl;
}
* Discussion
* Of course, this solution is not perfect. Several algorithms could be optimised if we know that a matrix is diagonal.
E.g. multiplying a diagonal matrix by a full matrix. Currently, it creates a full matrix from the diagonal one, and
call gemm. This is clearly not optimal.
However, this is not the point.
This class *just works* out of the box, and takes only a few minutes to write.
One can of course then work more and specialize e.g. the operator * to optimize the multiplication,
or any other algorithm, `if and when this is necesssary`. That is an implementation detail,
that be done later, or by someone else in the team, without stopping the work.
* One can generalize for a Mutable diagonal matrix. Left as an exercise...