mirror of
https://github.com/triqs/dft_tools
synced 2024-12-26 14:23:38 +01:00
38d89e2d01
- introducing scalar_valued gf - Change Fourier routines to run on scalar_valued, and then use those routines to run on matrix_valued. - Tools for slices of 2 variables functions
117 lines
4.9 KiB
C++
117 lines
4.9 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#ifndef TRIQS_GF_ONE_REAL_TIME_H
|
|
#define TRIQS_GF_ONE_REAL_TIME_H
|
|
#include "./tools.hpp"
|
|
#include "./gf.hpp"
|
|
#include "./local/tail.hpp"
|
|
#include "./domains/R.hpp"
|
|
#include "./meshes/linear.hpp"
|
|
|
|
namespace triqs { namespace gf {
|
|
|
|
struct retime {};
|
|
|
|
namespace gf_implementation {
|
|
|
|
template<typename Opt> struct mesh<retime,Opt> {
|
|
typedef linear_mesh<R_domain> type;
|
|
typedef typename type::domain_t domain_t;
|
|
|
|
static type make(double tmin, double tmax, size_t n_points, mesh_kind mk=full_bins) {
|
|
return type(domain_t(), tmin, tmax, n_points, mk);
|
|
}
|
|
|
|
};
|
|
|
|
// singularity
|
|
template<typename Opt> struct singularity<retime,matrix_valued,Opt> { typedef local::tail type;};
|
|
template<typename Opt> struct singularity<retime,scalar_valued,Opt> { typedef local::tail type;};
|
|
|
|
// h5 name
|
|
template<typename Opt> struct h5_name<retime,matrix_valued,Opt> { static std::string invoke(){ return "GfReTime";}};
|
|
template<typename Opt> struct h5_name<retime,scalar_valued,Opt> { static std::string invoke(){ return "GfReTime_s";}};
|
|
|
|
/// --------------------------- evaluator ---------------------------------
|
|
template<typename Opt, typename Target>
|
|
struct evaluator<retime,Target,Opt> {
|
|
static constexpr int arity = 1;
|
|
//typedef typename std::conditional < std::is_same<Target, matrix_valued>::value, arrays::matrix_view<std::complex<double>>, std::complex<double>>::type rtype;
|
|
typedef typename std::conditional < std::is_same<Target, matrix_valued>::value, arrays::matrix<std::complex<double>>, std::complex<double>>::type rtype;
|
|
template<typename G>
|
|
rtype operator() (G const * g,double t0) const {
|
|
auto & data = g->data();
|
|
auto & mesh = g->mesh();
|
|
size_t index; double w; bool in;
|
|
std::tie(in, index, w) = windowing(mesh,t0);
|
|
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
|
|
return
|
|
(1-w) * data(mesh.index_to_linear(index ), arrays::ellipsis() )
|
|
+ w * data(mesh.index_to_linear(index+1), arrays::ellipsis() );
|
|
}
|
|
template<typename G>
|
|
local::tail_view operator()(G const * g,freq_infty const &) const {return g->singularity();}
|
|
};
|
|
|
|
/// --------------------------- data access ---------------------------------
|
|
template<typename Opt> struct data_proxy<retime,matrix_valued,Opt> : data_proxy_array<std::complex<double>,3> {};
|
|
template<typename Opt> struct data_proxy<retime,scalar_valued,Opt> : data_proxy_array<std::complex<double>,1> {};
|
|
|
|
// ------------------------------- Factories --------------------------------------------------
|
|
|
|
//matrix_valued
|
|
template<typename Opt> struct factories<retime, matrix_valued,Opt> {
|
|
typedef gf<retime,matrix_valued> gf_t;
|
|
|
|
static gf_t make_gf(double tmin, double tmax, size_t n_points, tqa::mini_vector<size_t,2> shape, mesh_kind mk) {
|
|
typename gf_t::data_non_view_t A(shape.front_append(n_points)); A() =0;
|
|
return gf_t(mesh<retime,Opt>::make(tmin, tmax, n_points,mk), std::move(A), local::tail(shape), nothing());
|
|
}
|
|
|
|
static gf_t make_gf(double tmin, double tmax, size_t n_points, tqa::mini_vector<size_t,2> shape) {
|
|
typename gf_t::data_non_view_t A(shape.front_append(n_points)); A() =0;
|
|
return gf_t(mesh<retime,Opt>::make(tmin, tmax, n_points), std::move(A), local::tail(shape), nothing());
|
|
}
|
|
|
|
};
|
|
|
|
//scalar_valued
|
|
template<typename Opt> struct factories<retime, scalar_valued,Opt> {
|
|
typedef gf<retime,scalar_valued> gf_t;
|
|
|
|
static gf_t make_gf(double tmin, double tmax, size_t n_points, mesh_kind mk) {
|
|
typename gf_t::data_non_view_t A(n_points); A() =0;
|
|
return gf_t(mesh<retime,Opt>::make(tmin, tmax, n_points,mk), std::move(A), local::tail(tqa::mini_vector<size_t,2>(1,1)), nothing());
|
|
}
|
|
|
|
static gf_t make_gf(double tmin, double tmax, size_t n_points) {
|
|
typename gf_t::data_non_view_t A(n_points); A() =0;
|
|
return gf_t(mesh<retime,Opt>::make(tmin, tmax, n_points), std::move(A), local::tail(tqa::mini_vector<size_t,2>(1,1)), nothing());
|
|
}
|
|
|
|
};
|
|
|
|
|
|
} // gf_implementation
|
|
}}
|
|
#endif
|
|
|