mirror of
https://github.com/triqs/dft_tools
synced 2024-11-09 07:33:47 +01:00
abd087e674
* Replace <<= with << * Reordering in put_Sigma * Remove all instances of wien2triqs in doc
172 lines
5.5 KiB
Python
172 lines
5.5 KiB
Python
from pytriqs.applications.dft.sumk_lda import *
|
|
from pytriqs.applications.dft.converters.wien2k_converter import *
|
|
from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
|
|
|
|
lda_filename = 'Ce-gamma'
|
|
beta = 40
|
|
U_int = 6.00
|
|
J_hund = 0.70
|
|
Loops = 2 # Number of DMFT sc-loops
|
|
Mix = 0.7 # Mixing factor in QMC
|
|
# 1.0 ... all from imp; 0.0 ... all from Gloc
|
|
DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein
|
|
useBlocs = False # use bloc structure from LDA input
|
|
useMatrix = True # use the U matrix calculated from Slater coefficients instead of (U+2J, U, U-J)
|
|
Natomic = 1
|
|
|
|
HDFfilename = lda_filename+'.h5'
|
|
|
|
use_val= U_int * (Natomic - 0.5) - J_hund * (Natomic * 0.5 - 0.5)
|
|
|
|
# Convert DMFT input:
|
|
# Can be commented after the first run
|
|
Converter = Wien2kConverter(filename=lda_filename)
|
|
Converter.convert_dmft_input()
|
|
|
|
#check if there are previous runs:
|
|
previous_runs = 0
|
|
previous_present = False
|
|
|
|
if mpi.is_master_node():
|
|
ar = HDFArchive(HDFfilename,'a')
|
|
if 'iterations' in ar:
|
|
previous_present = True
|
|
previous_runs = ar['iterations']
|
|
else:
|
|
previous_runs = 0
|
|
previous_present = False
|
|
del ar
|
|
|
|
mpi.barrier()
|
|
previous_runs = mpi.bcast(previous_runs)
|
|
previous_present = mpi.bcast(previous_present)
|
|
|
|
# Init the SumK class
|
|
SK=SumkLDA(hdf_file=lda_filename+'.h5',use_lda_blocks=False)
|
|
|
|
Norb = SK.corr_shells[0][3]
|
|
l = SK.corr_shells[0][2]
|
|
|
|
# Init the Solver:
|
|
S = Solver(beta = beta, l = l)
|
|
|
|
if (previous_present):
|
|
# load previous data:
|
|
mpi.report("Using stored data for initialisation")
|
|
if (mpi.is_master_node()):
|
|
ar = HDFArchive(HDFfilename,'a')
|
|
S.Sigma << ar['SigmaImFreq']
|
|
del ar
|
|
S.Sigma = mpi.bcast(S.Sigma)
|
|
SK.load()
|
|
|
|
# DMFT loop:
|
|
for Iteration_Number in range(1,Loops+1):
|
|
|
|
itn = Iteration_Number + previous_runs
|
|
|
|
# put Sigma into the SumK class:
|
|
SK.put_Sigma(Sigma_imp = [ S.Sigma ])
|
|
|
|
# Compute the SumK, possibly fixing mu by dichotomy
|
|
if SK.density_required and (Iteration_Number > 0):
|
|
Chemical_potential = SK.find_mu( precision = 0.01 )
|
|
else:
|
|
mpi.report("No adjustment of chemical potential\nTotal density = %.3f"%SK.total_density(mu=Chemical_potential))
|
|
|
|
# Density:
|
|
S.G << SK.extract_G_loc()[0]
|
|
mpi.report("Total charge of Gloc : %.6f"%S.G.total_density())
|
|
dm = S.G.density()
|
|
|
|
if ((Iteration_Number==1)and(previous_present==False)):
|
|
SK.set_dc( dens_mat=dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type, use_val=use_val)
|
|
|
|
# set atomic levels:
|
|
eal = SK.eff_atomic_levels()[0]
|
|
S.set_atomic_levels( eal = eal )
|
|
|
|
# update hdf5
|
|
if (mpi.is_master_node()):
|
|
ar = HDFArchive(HDFfilename,'a')
|
|
ar['Chemical_Potential%s'%itn] = Chemical_potential
|
|
del ar
|
|
|
|
# solve it:
|
|
S.solve(U_int = U_int, J_hund = J_hund, verbosity = 1)
|
|
|
|
if (mpi.is_master_node()):
|
|
ar = HDFArchive(HDFfilename)
|
|
ar['iterations'] = itn
|
|
|
|
# Now mix Sigma and G:
|
|
if ((itn>1)or(previous_present)):
|
|
if (mpi.is_master_node()and (Mix<1.0)):
|
|
mpi.report("Mixing Sigma and G with factor %s"%Mix)
|
|
if ('SigmaImFreq' in ar):
|
|
S.Sigma << Mix * S.Sigma + (1.0-Mix) * ar['SigmaImFreq']
|
|
if ('GF' in ar):
|
|
S.G << Mix * S.G + (1.0-Mix) * ar['GF']
|
|
|
|
S.G = mpi.bcast(S.G)
|
|
S.Sigma = mpi.bcast(S.Sigma)
|
|
|
|
|
|
|
|
if (mpi.is_master_node()):
|
|
ar['SigmaImFreq'] = S.Sigma
|
|
ar['GF'] = S.G
|
|
|
|
# after the Solver has finished, set new double counting:
|
|
dm = S.G.density()
|
|
SK.set_dc( dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type , use_val=use_val)
|
|
# correlation energy calculations:
|
|
correnerg = 0.5 * (S.G * S.Sigma).total_density()
|
|
mpi.report("Corr. energy = %s"%correnerg)
|
|
if (mpi.is_master_node()):
|
|
ar['correnerg%s'%itn] = correnerg
|
|
ar['DCenerg%s'%itn] = SK.dc_energ
|
|
del ar
|
|
|
|
|
|
#Save stuff:
|
|
SK.save()
|
|
if (mpi.is_master_node()):
|
|
print 'DC after solver: ',SK.dc_imp[SK.invshellmap[0]]
|
|
|
|
|
|
# do some analysis:
|
|
mpi.report("Orbital densities of impurity Green function:")
|
|
dm1 = S.G.density()
|
|
for s in dm1:
|
|
mpi.report("Block %s: "%s)
|
|
for ii in range(len(dm1[s])):
|
|
str = ''
|
|
for jj in range(len(dm1[s])):
|
|
if (dm1[s][ii,jj].real>0):
|
|
str += " %.4f"%(dm1[s][ii,jj].real)
|
|
else:
|
|
str += " %.4f"%(dm1[s][ii,jj].real)
|
|
mpi.report(str)
|
|
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())
|
|
|
|
|
|
# find exact chemical potential
|
|
if (SK.density_required):
|
|
SK.chemical_potential = SK.find_mu( precision = 0.000001 )
|
|
dN,d = SK.calc_density_correction(filename = lda_filename+'.qdmft')
|
|
|
|
mpi.report("Trace of Density Matrix: %s"%d)
|
|
|
|
#correlation energy:
|
|
if (mpi.is_master_node()):
|
|
ar = HDFArchive(HDFfilename)
|
|
itn = ar['iterations']
|
|
correnerg = ar['correnerg%s'%itn]
|
|
DCenerg = ar['DCenerg%s'%itn]
|
|
del ar
|
|
correnerg -= DCenerg[0]
|
|
f=open(lda_filename+'.qdmft','a')
|
|
f.write("%.16f\n"%correnerg)
|
|
f.close()
|