mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 11:43:47 +01:00
f2c7d449cc
for earlier commits, see TRIQS0.x repository.
127 lines
4.8 KiB
C++
127 lines
4.8 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
|
|
#include "fourier_real.hpp"
|
|
#include <fftw3.h>
|
|
|
|
namespace triqs { namespace gf {
|
|
|
|
namespace impl_local_real {
|
|
inline dcomplex th_expo(double t, double a ) { return (t < 0 ? 0 : -I * exp(-a*t)); }
|
|
inline dcomplex th_expo_neg(double t, double a ) { return (t > 0 ? 0 : I * exp(a*t)); }
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
|
|
void fourier_impl(gf_view<refreq> & gw, gf_view<retime> const & gt) {
|
|
|
|
using namespace impl_local_real;
|
|
|
|
size_t L = gt.mesh().size();
|
|
if (gw.mesh().size() != gt.mesh().size()) TRIQS_RUNTIME_ERROR << "Meshes are different";
|
|
double test = std::abs(gt.mesh().delta() * gw.mesh().delta() * L / (2*pi) -1);
|
|
if (test > 1.e-10) TRIQS_RUNTIME_ERROR << "Meshes are not compatible";
|
|
|
|
const double tmin = gt.mesh().x_min() + (gt.mesh().kind() == half_bins ? 0.5 : 0.0) * gt.mesh().delta();
|
|
const double wmin = gw.mesh().x_min() + (gw.mesh().kind() == half_bins ? 0.5 : 0.0) * gw.mesh().delta();
|
|
|
|
auto ta = gt(freq_infty());
|
|
tqa::vector<dcomplex> g_in(L), g_out(L);
|
|
|
|
for (size_t n1=0; n1<gw.data().shape()[1];n1++) {
|
|
for (size_t n2=0; n2<gw.data().shape()[2];n2++) {
|
|
|
|
dcomplex t1 = ta(1)(n1,n2), t2= ta.get_or_zero(2)(n1,n2);
|
|
dcomplex a1 = (t1 - I * t2)/2, a2 = (t1 + I * t2)/2;
|
|
|
|
g_in() = 0;
|
|
|
|
for (auto & t : gt.mesh()) {
|
|
g_in(t.index()) = (gt(t)(n1,n2) - (a1*th_expo(t,1) + a2*th_expo_neg(t,1))) * std::exp(I*t*wmin);
|
|
}
|
|
|
|
details::fourier_base(g_in, g_out, L, true);
|
|
|
|
for (auto & w : gw.mesh()) {
|
|
gw(w)(n1,n2) = gt.mesh().delta() * std::exp(I*w*tmin) * std::exp(-I*wmin*tmin) * g_out(w.index())
|
|
+ (a1/(w+I) + a2/(w-I));
|
|
}
|
|
}
|
|
}
|
|
|
|
// set tail
|
|
gw.singularity() = gt.singularity();
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
void inverse_fourier_impl (gf_view<retime> & gt, gf_view<refreq> const & gw) {
|
|
|
|
using namespace impl_local_real;
|
|
|
|
size_t L = gw.mesh().size();
|
|
if (gw.mesh().size() != gt.mesh().size()) TRIQS_RUNTIME_ERROR << "Meshes are different";
|
|
double test = std::abs(gt.mesh().delta() * gw.mesh().delta() * L / (2*pi) -1);
|
|
if (test > 1.e-10) TRIQS_RUNTIME_ERROR << "Meshes are not compatible";
|
|
|
|
const double tmin = gt.mesh().x_min() + (gt.mesh().kind() == half_bins ? 0.5 : 0.0) * gt.mesh().delta();
|
|
const double wmin = gw.mesh().x_min() + (gw.mesh().kind() == half_bins ? 0.5 : 0.0) * gw.mesh().delta();
|
|
|
|
auto ta = gw(freq_infty());
|
|
tqa::vector<dcomplex> g_in(L), g_out(L);
|
|
|
|
for (size_t n1=0; n1<gt.data().shape()[1];n1++) {
|
|
for (size_t n2=0; n2<gt.data().shape()[2];n2++) {
|
|
|
|
dcomplex t1 = ta(1)(n1,n2), t2 = ta.get_or_zero(2)(n1,n2);
|
|
dcomplex a1 = (t1 - I * t2)/2, a2 = (t1 + I * t2)/2;
|
|
g_in() = 0;
|
|
|
|
for (auto & w: gw.mesh()) {
|
|
g_in(w.index()) = (gw(w)(n1,n2) - (a1/(w+I) + a2/(w-I))) * std::exp(-I*w*tmin);
|
|
}
|
|
|
|
details::fourier_base(g_in, g_out, L, false);
|
|
|
|
const double corr = 1.0/(gt.mesh().delta()*L);
|
|
for (auto & t : gt.mesh()) {
|
|
gt(t)(n1,n2) = corr * std::exp(I*wmin*tmin) * std::exp(-I*wmin*t) *
|
|
g_out(t.index()) + a1*th_expo(t,1) + a2*th_expo_neg(t,1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// set tail
|
|
gt.singularity() = gw.singularity();
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
gf_keeper<tags::fourier,retime> lazy_fourier (gf_view<retime> const & g) { return g;}
|
|
gf_keeper<tags::fourier,refreq> lazy_inverse_fourier (gf_view<refreq> const & g) { return g;}
|
|
|
|
void triqs_gf_view_assign_delegation( gf_view<refreq> &g, gf_keeper<tags::fourier,retime> const & L) { fourier_impl (g,L.g);}
|
|
void triqs_gf_view_assign_delegation( gf_view<retime> &g, gf_keeper<tags::fourier,refreq> const & L) { inverse_fourier_impl(g,L.g);}
|
|
|
|
}}
|