3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 14:08:24 +01:00
dft_tools/triqs/gf/refreq_imtime.hpp

107 lines
4.4 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_IMTIME_REFREQ_TIMES_H
#define TRIQS_GF_IMTIME_REFREQ_TIMES_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./imtime.hpp"
#include "./refreq.hpp"
#include "./meshes/product.hpp"
namespace triqs { namespace gf {
struct refreq_imtime {};
namespace gf_implementation {
// the mesh
template<typename Opt> struct mesh<refreq_imtime,Opt> {
typedef typename mesh<refreq,Opt>::type m1_t;
typedef typename mesh<imtime,Opt>::type m2_t;
typedef mesh_product<m1_t,m2_t> type;
static type make (double wmin, double wmax, size_t n_freq, double beta, statistic_enum S, size_t nt, mesh_kind mk=full_bins ) {
return {make_gf_mesh<refreq,Opt>(wmin,wmax,n_freq), make_gf_mesh<imtime,Opt>(beta,S,nt,mk)};
}
};
// singularity
//template<typename Opt> struct singularity<refreq_imtime,scalar_valued,Opt> { typedef gf<retime,scalar_valued> type;};
// h5 name
template<typename Opt> struct h5_name<refreq_imtime,scalar_valued,Opt> { static std::string invoke(){ return "GfReFreqImTime";}};
/// --------------------------- data access ---------------------------------
template<typename Opt> struct data_proxy<refreq_imtime,scalar_valued,Opt> : data_proxy_array<std::complex<double>,1> {};
/// --------------------------- evaluator ---------------------------------
template<typename Opt>
struct evaluator<refreq_imtime,scalar_valued,Opt> {
static constexpr int arity = 2;
template<typename G>
std::complex<double> operator() (G const * g, double omega, double tau) const {
double beta = std::get<1>(g->mesh().components()).domain().beta;
int p = std::floor(tau/beta);
tau -= p*beta;
size_t n1,n2; double w1,w2; bool in;
std::tie(in, n1, w1) = windowing( std::get<0>(g->mesh().components()),omega);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
std::tie(in, n2, w2) = windowing( std::get<1>(g->mesh().components()),tau);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
auto gg = on_mesh(*g); //[g]( size_t n1, size_t n2) {return g->on_mesh(n1,n2);};
auto res = w1 *( w2*gg(n1,n2) + (1-w2)*gg(n1,n2+1)) + (1-w1) * ( w2*gg(n1+1,n2) + (1-w2)*gg(n1+1,n2+1));
return ((std::get<1>(g->mesh().components()).domain().statistic == Fermion) && (p%2==1) ? -res : res);
}
};
// ------------------------------- Factories --------------------------------------------------
template<typename Opt> struct factories<refreq_imtime, scalar_valued,Opt> {
typedef gf<refreq_imtime, scalar_valued,Opt> gf_t;
template<typename MeshType>
static gf_t make_gf(MeshType && m) {
typename gf_t::data_non_view_t A(m.size());
A() =0;
return gf_t (m, std::move(A), nothing(), nothing() ) ;
}
static gf_t make_gf(double wmin, double wmax, size_t n_freq, double beta, statistic_enum S, size_t nt, mesh_kind mk=full_bins) {
auto m = make_gf_mesh<refreq_imtime,Opt>(wmin, wmax, n_freq, beta,S, nt, mk);
typename gf_t::data_non_view_t A(m.size());
A() =0;
return gf_t (m, std::move(A), nothing(), nothing() ) ;
}
};
} // gf_implementation
//slices
gf_view<refreq,scalar_valued> slice_mesh_imtime (gf_view<refreq_imtime,scalar_valued> g, size_t index) {
auto arr = reinterpret_linear_array(g.mesh(),g.data()); // view it as a 2d array
return { std::get<0>(g.mesh().components()), arr(arrays::range(),index), local::tail(1,1), nothing() };
}
}}
#endif