mirror of
https://github.com/triqs/dft_tools
synced 2025-01-13 14:29:01 +01:00
0a1285405c
- Add Fourier for lattice. - Add regular_bz_mesh, cyclic_lattice, and their FFT. - rm freq_infty. - The gf can now be evaluated on a tail_view, which result in composing the tail. - Fix the following issue : g(om_) << g(om_ +1) will recompose the tail correctly. - TODO : TEST THIS NEW FEATURE IN DETAIL. - Work on singularity for G(x, omega) - Separate the factory for singularity from the data factory in gf. - overload assign_from_functoin (renamed). - Fix singularity_t and co in the gf (const issue). - Clean tail, add tail_const_view - add m_tail for x -> tail on any mesh - test curry + fourier works on k
74 lines
2.9 KiB
C++
74 lines
2.9 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011-2014 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#pragma once
|
|
#include "fourier_base.hpp"
|
|
#include <triqs/gfs/refreq.hpp>
|
|
#include <triqs/gfs/retime.hpp>
|
|
|
|
namespace triqs { namespace gfs {
|
|
|
|
template <typename Target, typename Singularity, typename Opt, bool V, bool C>
|
|
gf_keeper<tags::fourier, retime, Target, Singularity> fourier(gf_impl<retime, Target, Singularity, Opt, V, C> const& g) {
|
|
return {g};
|
|
}
|
|
template <typename Target, typename Singularity, typename Opt, bool V, bool C>
|
|
gf_keeper<tags::fourier, refreq, Target, Singularity> inverse_fourier(gf_impl<refreq, Target, Singularity, Opt, V, C> const& g) {
|
|
return {g};
|
|
}
|
|
|
|
void _fourier_impl(gf_view<refreq, scalar_valued> gw, gf_const_view<retime, scalar_valued> gt);
|
|
void _fourier_impl(gf_view<retime, scalar_valued> gt, gf_const_view<refreq, scalar_valued> gw);
|
|
|
|
// helper functions
|
|
template <typename Opt> gf_mesh<refreq, Opt> make_mesh_fourier_compatible(gf_mesh<retime, Opt> const& m) {
|
|
int L = m.size();
|
|
double pi = std::acos(-1);
|
|
double wmin = -pi * (L - 1) / (L * m.delta());
|
|
double wmax = pi * (L - 1) / (L * m.delta());
|
|
return {wmin, wmax, L};
|
|
}
|
|
|
|
template <typename Opt>
|
|
gf_mesh<retime, Opt> make_mesh_fourier_compatible(gf_mesh<refreq, Opt> const& m, mesh_kind mk = full_bins) {
|
|
double pi = std::acos(-1);
|
|
int L = m.size();
|
|
double tmin = -pi * (L-1) / (L*m.delta());
|
|
double tmax = pi * (L-1) / (L*m.delta());
|
|
return {tmin, tmax, L};
|
|
}
|
|
|
|
template <typename Target, typename Singularity, typename Opt, bool V, bool C>
|
|
gf_view<refreq, Target> make_gf_from_fourier(gf_impl<retime, Target, Singularity, Opt, V, C> const& gt) {
|
|
auto gw = gf<refreq, Target>{make_mesh_fourier_compatible(gt.mesh()), get_target_shape(gt)};
|
|
gw() = fourier(gt);
|
|
return gw;
|
|
}
|
|
|
|
template <typename Target, typename Singularity, typename Opt, bool V, bool C>
|
|
gf_view<retime, Target> make_gf_from_inverse_fourier(gf_impl<refreq, Target, Singularity, Opt, V, C> const& gw) {
|
|
auto gt = gf<retime, Target>{make_mesh_fourier_compatible(gw.mesh()), get_target_shape(gw)};
|
|
gt() = inverse_fourier(gw);
|
|
return gt;
|
|
}
|
|
|
|
}}
|
|
|