mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 19:53:45 +01:00
0a1285405c
- Add Fourier for lattice. - Add regular_bz_mesh, cyclic_lattice, and their FFT. - rm freq_infty. - The gf can now be evaluated on a tail_view, which result in composing the tail. - Fix the following issue : g(om_) << g(om_ +1) will recompose the tail correctly. - TODO : TEST THIS NEW FEATURE IN DETAIL. - Work on singularity for G(x, omega) - Separate the factory for singularity from the data factory in gf. - overload assign_from_functoin (renamed). - Fix singularity_t and co in the gf (const issue). - Clean tail, add tail_const_view - add m_tail for x -> tail on any mesh - test curry + fourier works on k
108 lines
3.6 KiB
C++
108 lines
3.6 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012-2013 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#pragma once
|
|
#include "./tools.hpp"
|
|
#include "./gf.hpp"
|
|
#include "./local/tail.hpp"
|
|
#include "./local/no_tail.hpp"
|
|
#include "./domains/matsubara.hpp"
|
|
#include "./meshes/matsubara_time.hpp"
|
|
#include "./evaluators.hpp"
|
|
|
|
namespace triqs {
|
|
namespace gfs {
|
|
|
|
struct imtime {};
|
|
|
|
template <typename Opt> struct gf_mesh<imtime, Opt> : matsubara_time_mesh {
|
|
template <typename... T> gf_mesh(T &&... x) : matsubara_time_mesh(std::forward<T>(x)...) {}
|
|
// using matsubara_time_mesh::matsubara_time_mesh;
|
|
};
|
|
|
|
// singularity
|
|
template <> struct gf_default_singularity<imtime, matrix_valued> {
|
|
using type = tail;
|
|
};
|
|
template <> struct gf_default_singularity<imtime, scalar_valued> {
|
|
using type = tail;
|
|
};
|
|
|
|
namespace gfs_implementation {
|
|
|
|
// h5 name
|
|
template <typename Singularity, typename Opt> struct h5_name<imtime, matrix_valued, Singularity, Opt> {
|
|
static std::string invoke() { return "ImTime"; }
|
|
};
|
|
|
|
/// --------------------------- data access ---------------------------------
|
|
|
|
template <typename Opt> struct data_proxy<imtime, matrix_valued, Opt> : data_proxy_array<double, 3> {};
|
|
template <typename Opt> struct data_proxy<imtime, scalar_valued, Opt> : data_proxy_array<double, 1> {};
|
|
|
|
/// --------------------------- closest mesh point on the grid ---------------------------------
|
|
|
|
template <typename Singularity, typename Opt, typename Target> struct get_closest_point<imtime, Target, Singularity, Opt> {
|
|
// index_t is int
|
|
template <typename G, typename T> static int invoke(G const *g, closest_pt_wrap<T> const &p) {
|
|
double x = (g->mesh().kind() == half_bins ? double(p.value) : double(p.value) + 0.5 * g->mesh().delta());
|
|
int n = std::floor(x / g->mesh().delta());
|
|
return n;
|
|
}
|
|
};
|
|
|
|
/// --------------------------- evaluator ---------------------------------
|
|
|
|
// this one is specific because of the beta-antiperiodicity for fermions
|
|
template <> struct evaluator_fnt_on_mesh<imtime> {
|
|
double w1, w2;
|
|
long n;
|
|
|
|
evaluator_fnt_on_mesh() = default;
|
|
|
|
evaluator_fnt_on_mesh(gf_mesh<imtime> const &m, double tau) {
|
|
double beta = m.domain().beta;
|
|
int p = std::floor(tau / beta);
|
|
tau -= p * beta;
|
|
double w;
|
|
bool in;
|
|
std::tie(in, n, w) = windowing(m, tau);
|
|
if (!in) TRIQS_RUNTIME_ERROR << " Evaluation out of bounds";
|
|
if ((m.domain().statistic == Fermion) && (p % 2 != 0)) {
|
|
w2 = -w;
|
|
w1 = w - 1;
|
|
} else {
|
|
w2 = w;
|
|
w1 = 1 - w;
|
|
}
|
|
}
|
|
|
|
template <typename F> auto operator()(F const &f) const DECL_AND_RETURN(w1 *f(n) + w2 *f(n + 1));
|
|
};
|
|
|
|
// now evaluator
|
|
template <typename Singularity, typename Opt, typename Target>
|
|
struct evaluator<imtime, Target, Singularity, Opt> : evaluator_one_var<imtime> {};
|
|
|
|
} // gfs_implementation.
|
|
}
|
|
}
|
|
|