3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-07 14:43:49 +01:00
dft_tools/python/trans_basis.py

197 lines
6.6 KiB
Python

from triqs_dft_tools.sumk_dft import *
from triqs_dft_tools.converters import Wien2kConverter
from pytriqs.gf import *
from pytriqs.archive import *
import pytriqs.utility.mpi as mpi
import numpy
import copy
class TransBasis:
"""
Computates rotations into a new basis, using the condition that a given property is diagonal in the new basis.
"""
def __init__(self, SK=None, hdf_datafile=None):
"""
Initialization of the class. There are two ways to do so:
- existing SumkLDA class : when you have an existing SumkLDA instance
- from hdf5 archive : when you want to use data from hdf5 archive
Giving the class instance overrides giving the string for the hdf5 archive.
Parameters
----------
SK : class SumkLDA, optional
Existing instance of SumkLDA class.
hdf5_datafile : string, optional
Name of hdf5 archive to be used.
"""
if SK is None:
# build our own SK instance
if hdf_datafile is None:
mpi.report("trans_basis: give SK instance or HDF filename!")
return 0
Converter = Wien2kConverter(filename=hdf_datafile, repacking=False)
Converter.convert_dft_input()
del Converter
self.SK = SumkDFT(hdf_file=hdf_datafile +
'.h5', use_dft_blocks=False)
else:
self.SK = SK
self.T = copy.deepcopy(self.SK.T[0])
self.w = numpy.identity(SK.corr_shells[0]['dim'])
def calculate_diagonalisation_matrix(self, prop_to_be_diagonal='eal'):
"""
Calculates the diagonalisation matrix w, and stores it as member of the class.
Parameters
----------
prop_to_be_diagonal : string, optional
Defines the property to be diagonalized.
- 'eal' : local hamiltonian (i.e. crystal field)
- 'dm' : local density matrix
Returns
-------
wsqr : double
Measure for the degree of rotation done by the diagonalisation. wsqr=1 means no rotation.
"""
if prop_to_be_diagonal == 'eal':
prop = self.SK.eff_atomic_levels()[0]
elif prop_to_be_diagonal == 'dm':
prop = self.SK.density_matrix(method='using_point_integration')[0]
else:
mpi.report(
"trans_basis: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'.")
return 0
if self.SK.SO == 0:
self.eig, self.w = numpy.linalg.eigh(prop['up'])
# calculate new Transformation matrix
self.T = numpy.dot(self.T.transpose().conjugate(),
self.w).conjugate().transpose()
else:
self.eig, self.w = numpy.linalg.eigh(prop['ud'])
# calculate new Transformation matrix
self.T = numpy.dot(self.T.transpose().conjugate(),
self.w).conjugate().transpose()
# measure for the 'unity' of the transformation:
wsqr = sum(abs(self.w.diagonal())**2) / self.w.diagonal().size
return wsqr
def rotate_gf(self, gf_to_rot):
"""
Uses the diagonalisation matrix w to rotate a given GF into the new basis.
Parameters
----------
gf_to_rot : BlockGf
Green's function block to rotate.
Returns
-------
gfreturn : BlockGf
Green's function rotated into the new basis.
"""
# build a full GF
gfrotated = BlockGf(name_block_generator=[(block, GfImFreq(
indices=inner, mesh=gf_to_rot.mesh)) for block, inner in self.SK.gf_struct_sumk[0]], make_copies=False)
# transform the CTQMC blocks to the full matrix:
# ish is the index of the inequivalent shell corresponding to icrsh
ish = self.SK.corr_to_inequiv[0]
for block, inner in self.gf_struct_solver[ish].iteritems():
for ind1 in inner:
for ind2 in inner:
gfrotated[self.SK.solver_to_sumk_block[ish][block]][
ind1, ind2] << gf_to_rot[block][ind1, ind2]
# Rotate using the matrix w
for bname, gf in gfrotated:
gfrotated[bname].from_L_G_R(
self.w.transpose().conjugate(), gfrotated[bname], self.w)
gfreturn = gf_to_rot.copy()
# Put back into CTQMC basis:
for block, inner in self.gf_struct_solver[ish].iteritems():
for ind1 in inner:
for ind2 in inner:
gfreturn[block][ind1, ind2] << gfrotated[
self.SK.solver_to_sumk_block[0][block]][ind1, ind2]
return gfreturn
def write_trans_file(self, filename):
"""
Writes the new transformation T into a file readable by dmftproj. By that, the requested quantity is
diagonal already at input.
Parameters
----------
filename : string
Name of the file where the transformation is stored.
"""
f = open(filename, 'w')
Tnew = self.T.conjugate()
dim = self.SK.corr_shells[0]['dim']
if self.SK.SO == 0:
for i in range(dim):
st = ''
for k in range(dim):
st += " %9.6f" % (Tnew[i, k].real)
st += " %9.6f" % (Tnew[i, k].imag)
for k in range(2 * dim):
st += " 0.0"
if i < (dim - 1):
f.write("%s\n" % (st))
else:
st1 = st.replace(' ', '*', 1)
f.write("%s\n" % (st1))
for i in range(dim):
st = ''
for k in range(2 * dim):
st += " 0.0"
for k in range(dim):
st += " %9.6f" % (Tnew[i, k].real)
st += " %9.6f" % (Tnew[i, k].imag)
if i < (dim - 1):
f.write("%s\n" % (st))
else:
st1 = st.replace(' ', '*', 1)
f.write("%s\n" % (st1))
else:
for i in range(dim):
st = ''
for k in range(dim):
st += " %9.6f" % (Tnew[i, k].real)
st += " %9.6f" % (Tnew[i, k].imag)
if i < (dim - 1):
f.write("%s\n" % (st))
else:
st1 = st.replace(' ', '*', 1)
f.write("%s\n" % (st1))
f.close()