3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-27 13:00:49 +01:00
dft_tools/triqs/gfs/block.hpp
Olivier Parcollet 6326c2b4eb gf/clef. Bug fix, and added scalar->matrix reinterpret for blocks
- clef : fix a little bug in storage when evaluating
  (was using the wrong trait to deduce storage type).
- gf : block :
     - added reinterpret_scalar_valued_gf_as_matrix_valued
       for block function
     - cleaned make_block_gf_view_from_vector
     - added make_block_gf_view_from_vectormake_block_gf_view_from_vector_of_cython_proxy
       and changed the cython accordingly because it requires a slightly different syntax.
     - updated tests
- gf : cleaned some template.
2013-10-31 14:41:48 +01:00

270 lines
12 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_BLOCK_H
#define TRIQS_GF_BLOCK_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./meshes/discrete.hpp"
namespace triqs {
namespace gfs {
struct block_index {};
template <typename Opt> struct gf_mesh<block_index, Opt> : discrete_mesh<discrete_domain> {
typedef discrete_mesh<discrete_domain> B;
gf_mesh() = default;
gf_mesh(int s) : B(s) {}
gf_mesh(discrete_domain const &d) : B(d) {}
gf_mesh(std::initializer_list<std::string> const &s) : B(s) {}
};
namespace gfs_implementation {
/// --------------------------- hdf5 ---------------------------------
template <typename Target, typename Opt> struct h5_name<block_index, Target, Opt> {
static std::string invoke() { return "BlockGf"; }
};
template <typename Target, typename Opt> struct h5_rw<block_index, Target, Opt> {
static void write(h5::group gr, gf_const_view<block_index, Target, Opt> g) {
for (size_t i = 0; i < g.mesh().size(); ++i) h5_write(gr, g.mesh().domain().names()[i], g._data[i]);
// h5_write(gr,"symmetry",g._symmetry);
}
template <bool IsView> static void read(h5::group gr, gf_impl<block_index, Target, Opt, IsView, false> &g) {
// does not work : need to read the block name and remake the mesh...
g._mesh = gf_mesh<block_index, Opt>(gr.get_all_subgroup_names());
g._data.resize(g._mesh.size());
// if (g._data.size() != g._mesh.size()) TRIQS_RUNTIME_ERROR << "h5 read block gf : number of block mismatch";
for (size_t i = 0; i < g.mesh().size(); ++i) h5_read(gr, g.mesh().domain().names()[i], g._data[i]);
// h5_read(gr,"symmetry",g._symmetry);
}
};
/// --------------------------- data access ---------------------------------
template <typename Target, typename Opt>
struct data_proxy<block_index, Target, Opt> : data_proxy_vector<typename regular_type_if_exists_else_type<Target>::type> {};
// ------------------------------- Factories --------------------------------------------------
template <typename Target, typename Opt> struct factories<block_index, Target, Opt> {
typedef gf_mesh<block_index, Opt> mesh_t;
typedef gf<block_index, Target> gf_t;
typedef gf_view<block_index, Target> gf_view_t;
struct target_shape_t {};
static typename gf_t::data_t make_data(mesh_t const &m, target_shape_t) { return std::vector<Target>(m.size()); }
static typename gf_t::singularity_t make_singularity(mesh_t const &m, target_shape_t) {
return {};
}
};
} // gfs_implementation
// ------------------------------- aliases --------------------------------------------------
template <typename... T> using block_gf = gf<block_index, gf<T...>>;
template <typename... T> using block_gf_view = gf_view<block_index, gf<T...>>;
template <typename... T> using block_gf_const_view = gf_const_view<block_index, gf<T...>>;
// ------------------------------- Free Factories for regular type --------------------------------------------------
// from a number and a gf to be copied
template <typename Variable, typename Target, typename Opt>
block_gf<Variable, Target, Opt> make_block_gf(int n, gf<Variable, Target, Opt> const &g) {
auto V = std::vector<gf<Variable, Target, Opt>>{};
for (int i = 0; i < n; ++i) V.push_back(g);
return {{n}, std::move(V), nothing{}, nothing{}};
}
// from a vector of gf (moving directly)
template <typename Variable, typename Target, typename Opt>
block_gf<Variable, Target, Opt> make_block_gf(std::vector<gf<Variable, Target, Opt>> V) {
return {{int(V.size())}, std::move(V), nothing{}, nothing{}};
}
// from a vector of gf : generalized to have a different type of gf in the vector (e.g. views...)
template <typename Variable, typename Target, typename Opt, typename GF2>
block_gf<Variable, Target, Opt> make_block_gf(std::vector<GF2> const &V) {
auto V2 = std::vector<gf<Variable, Target, Opt>>{};
for (auto const &g : V) V2.push_back(g);
return {{int(V.size())}, std::move(V2), nothing{}, nothing{}};
}
// from a init list of GF with the correct type
template <typename Variable, typename Target, typename Opt>
block_gf<Variable, Target, Opt> make_block_gf(std::initializer_list<gf<Variable, Target, Opt>> const &V) {
return {{int(V.size())}, V, nothing{}, nothing{}};
}
// from vector<string> and a gf to be copied
template <typename Variable, typename Target, typename Opt>
block_gf<Variable, Target, Opt> make_block_gf(std::vector<std::string> block_names, gf<Variable, Target, Opt> const &g) {
auto V = std::vector<gf<Variable, Target, Opt>>{};
for (int i = 0; i < block_names.size(); ++i) V.push_back(g);
return {{block_names}, std::move(V), nothing{}, nothing{}};
}
// from vector<string>, vector<gf>
template <typename Variable, typename Target, typename Opt>
block_gf<Variable, Target, Opt> make_block_gf(std::vector<std::string> block_names, std::vector<gf<Variable, Target, Opt>> V) {
if (block_names.size() != V.size())
TRIQS_RUNTIME_ERROR << "make_block_gf(vector<string>, vector<gf>) : the two vectors do not have the same size !";
return {{block_names}, std::move(V), nothing{}, nothing{}};
}
// from vector<string>, init_list<GF>
template <typename Variable, typename Target, typename Opt>
block_gf<Variable, Target, Opt> make_block_gf(std::vector<std::string> block_names,
std::initializer_list<gf<Variable, Target, Opt>> const &V) {
if (block_names.size() != V.size()) TRIQS_RUNTIME_ERROR << "make_block_gf(vector<string>, init_list) : size mismatch !";
return {{block_names}, V, nothing{}, nothing{}};
}
// ------------------------------- Free Factories for view type --------------------------------------------------
template <typename G0, typename... G>
gf_view<block_index, typename std::remove_reference<G0>::type::view_type> make_block_gf_view(G0 &&g0, G &&... g) {
auto V = std::vector<typename std::remove_reference<G0>::type::view_type>{std::forward<G0>(g0), std::forward<G>(g)...};
return {{int(V.size())}, std::move(V), nothing{}, nothing{}};
// return { gf_mesh<block_index, Opt> {int(V.size())}, std::move(V), nothing{}, nothing{} } ;
}
template <typename GF> gf_view<block_index, typename GF::regular_type> make_block_gf_view_from_vector(std::vector<GF> V) {
return {{int(V.size())}, std::move(V), nothing{}, nothing{}};
}
// for cython proxy only. do not document.
template <typename GF, typename GF2> gf_view<block_index, GF> make_block_gf_view_from_vector_of_cython_proxy(std::vector<GF2> V) {
return {{int(V.size())}, std::move(V), nothing{}, nothing{}};
}
// ------------------------------- Extend reinterpret_scalar_valued_gf_as_matrix_valued for block gf ------
template <typename Variable, typename Opt, typename Opt2, bool IsConst>
gf_view<block_index, gf<Variable, matrix_valued, Opt>, Opt2, IsConst>
reinterpret_scalar_valued_gf_as_matrix_valued(gf_view<block_index, gf<Variable, scalar_valued, Opt>, Opt2, IsConst> bg) {
std::vector<gf_view<Variable, matrix_valued, Opt>> V;
for (auto &g : bg) V.push_back(reinterpret_scalar_valued_gf_as_matrix_valued(g));
return make_block_gf_view_from_vector(std::move(V));
}
template <typename Variable, typename Opt, typename Opt2>
gf_const_view<block_index, gf<Variable, matrix_valued, Opt>, Opt2>
reinterpret_scalar_valued_gf_as_matrix_valued(gf<block_index, gf<Variable, scalar_valued, Opt>, Opt2> const &bg) {
return reinterpret_scalar_valued_gf_as_matrix_valued(bg());
}
template <typename Variable, typename Opt, typename Opt2>
gf_view<block_index, gf<Variable, matrix_valued, Opt>, Opt2>
reinterpret_scalar_valued_gf_as_matrix_valued(gf<block_index, gf<Variable, scalar_valued, Opt>, Opt2> &bg) {
return reinterpret_scalar_valued_gf_as_matrix_valued(bg());
}
// ------------------------------- Free functions --------------------------------------------------
// a simple function to get the number of blocks
template <typename T> size_t n_blocks(gf<block_index, T> const &g) { return g.mesh().size(); }
template <typename T> size_t n_blocks(gf_view<block_index, T> const &g) { return g.mesh().size(); }
// ------------------------------- an iterator over the blocks --------------------------------------------------
template<typename T> using __get_target = typename std::remove_reference<decltype(std::declval<T>()[0])>::type;
// iterator
template <typename G>
class block_gf_iterator
: public boost::iterator_facade<block_gf_iterator<G>, __get_target<G>, boost::forward_traversal_tag, __get_target<G> &> {
friend class boost::iterator_core_access;
typedef typename std::remove_reference<G>::type big_gf_t;
big_gf_t &big_gf;
typedef typename big_gf_t::mesh_t::const_iterator mesh_iterator_t;
mesh_iterator_t mesh_it;
__get_target<G> &dereference() const { return big_gf[*mesh_it]; }
bool equal(block_gf_iterator const &other) const { return ((mesh_it == other.mesh_it)); }
public:
block_gf_iterator(big_gf_t &bgf, bool at_end = false) : big_gf(bgf), mesh_it(&big_gf.mesh(), at_end) {}
void increment() { ++mesh_it; }
bool at_end() const { return mesh_it.at_end(); }
};
//------------
template <typename Target, typename Opt, bool B, bool C>
block_gf_iterator<gf_impl<block_index, Target, Opt, B, C>> begin(gf_impl<block_index, Target, Opt, B, C> &bgf) {
return {bgf, false};
}
//------------
template <typename Target, typename Opt, bool B, bool C>
block_gf_iterator<gf_impl<block_index, Target, Opt, B, C>> end(gf_impl<block_index, Target, Opt, B, C> &bgf) {
return {bgf, true};
}
//----- const iterator
template <typename G>
class block_gf_const_iterator
: public boost::iterator_facade<block_gf_const_iterator<G>, __get_target<G>, boost::forward_traversal_tag, __get_target<G> const &> {
friend class boost::iterator_core_access;
typedef typename std::remove_reference<G>::type big_gf_t;
big_gf_t const &big_gf;
typedef typename big_gf_t::mesh_t::const_iterator mesh_iterator_t;
mesh_iterator_t mesh_it;
__get_target<G> const &dereference() const { return big_gf[*mesh_it]; }
bool equal(block_gf_const_iterator const &other) const { return ((mesh_it == other.mesh_it)); }
public:
block_gf_const_iterator(big_gf_t const &bgf, bool at_end = false) : big_gf(bgf), mesh_it(&big_gf.mesh(), at_end) {}
void increment() { ++mesh_it; }
bool at_end() const { return mesh_it.at_end(); }
};
template <typename Target, typename Opt, bool B, bool C>
block_gf_const_iterator<gf_impl<block_index, Target, Opt, B, C>> begin(gf_impl<block_index, Target, Opt, B, C> const &bgf) {
return {bgf, false};
}
template <typename Target, typename Opt, bool B, bool C>
block_gf_const_iterator<gf_impl<block_index, Target, Opt, B, C>> end(gf_impl<block_index, Target, Opt, B, C> const &bgf) {
return {bgf, true};
}
template <typename Target, typename Opt, bool B, bool C>
block_gf_const_iterator<gf_impl<block_index, Target, Opt, B, C>> cbegin(gf_impl<block_index, Target, Opt, B, C> const &bgf) {
return {bgf, false};
}
template <typename Target, typename Opt, bool B, bool C>
block_gf_const_iterator<gf_impl<block_index, Target, Opt, B, C>> cend(gf_impl<block_index, Target, Opt, B, C> const &bgf) {
return {bgf, true};
}
}
}
#endif