mirror of
https://github.com/triqs/dft_tools
synced 2024-11-09 07:33:47 +01:00
3317371762
A method 'density_matrix()' for evaluating a density matrix of a given shell has been added to class ProjectorShell. It requires an ElectronicStructure object as an input an by default produces a site- and spin-diagonal part of the density matrix using the Fermi-weights obtained directly from VASP. Ideally, this density matrix should coincide with the one calculated within VASP itself (inside the LDA+U module). Corresponding sanity test has been added, which shows only that the calculation does not crash. Real numerical tests are needed.
80 lines
3.0 KiB
Python
80 lines
3.0 KiB
Python
|
|
import numpy as np
|
|
import vaspio
|
|
from inpconf import ConfigParameters
|
|
from plotools import ProjectorShell, ProjectorGroup
|
|
import mytest
|
|
|
|
################################################################################
|
|
#
|
|
# TestProjectorGroup
|
|
#
|
|
################################################################################
|
|
class TestProjectorGroup(mytest.MyTestCase):
|
|
"""
|
|
Class:
|
|
|
|
ProjectorGroup(sh_pars, proj_raw)
|
|
|
|
Scenarios:
|
|
- test output for a correct input
|
|
- test the output of 'orthogonalization()' (sanity check)
|
|
"""
|
|
def setUp(self):
|
|
conf_file = 'example.cfg'
|
|
self.pars = ConfigParameters(conf_file)
|
|
self.pars.parse_input()
|
|
self.vasp_data = vaspio.VaspData('./')
|
|
|
|
efermi = self.vasp_data.doscar.efermi
|
|
eigvals = self.vasp_data.eigenval.eigs - efermi
|
|
|
|
self.shells = [ProjectorShell(self.pars.shells[0], self.vasp_data.plocar.plo)]
|
|
self.proj_gr = ProjectorGroup(self.pars.groups[0], self.shells, eigvals)
|
|
|
|
# Scenario 1
|
|
def test_example(self):
|
|
# proj_sh.select_projectors(ib_win, nb_min, nb_max)
|
|
#
|
|
testout = 'projgroups.out.test'
|
|
nion, ns, nk, nlm, nbtot = self.proj_gr.shells[0].proj_win.shape
|
|
with open(testout, 'wt') as f:
|
|
f.write("pars: %s\n"%(self.pars.groups[0]))
|
|
for ion in xrange(nion):
|
|
for isp in xrange(ns):
|
|
for ik in xrange(nk):
|
|
ib1 = self.proj_gr.ib_win[ik, 0, 0]
|
|
ib2 = self.proj_gr.ib_win[ik, 0, 1]
|
|
f.write("%i %i\n"%(ib1, ib2))
|
|
ib1w = ib1 - self.proj_gr.nb_min
|
|
ib2w = ib2 - self.proj_gr.nb_min + 1
|
|
for ib in xrange(ib1w, ib2w):
|
|
for ilm in xrange(nlm):
|
|
p = self.proj_gr.shells[0].proj_win[ion, isp, ik, ilm, ib]
|
|
f.write("%5i %s\n"%(ilm+1, p))
|
|
|
|
# Scenario 2
|
|
def test_ortho(self):
|
|
self.proj_gr.orthogonalize()
|
|
|
|
testout = 'projortho.out.test'
|
|
nion, ns, nk, nlm, nbtot = self.proj_gr.shells[0].proj_win.shape
|
|
with open(testout, 'wt') as f:
|
|
f.write("pars: %s\n"%(self.pars.groups[0]))
|
|
for ion in xrange(nion):
|
|
for isp in xrange(ns):
|
|
for ik in xrange(nk):
|
|
ib1 = self.proj_gr.ib_win[ik, 0, 0]
|
|
ib2 = self.proj_gr.ib_win[ik, 0, 1]
|
|
f.write("%i %i\n"%(ib1, ib2))
|
|
ib1w = ib1 - self.proj_gr.nb_min
|
|
ib2w = ib2 - self.proj_gr.nb_min + 1
|
|
for ib in xrange(ib1w, ib2w):
|
|
for ilm in xrange(nlm):
|
|
p = self.proj_gr.shells[0].proj_win[ion, isp, ik, ilm, ib]
|
|
f.write("%5i %s\n"%(ilm+1, p))
|
|
|
|
expected_file = 'projortho.out'
|
|
self.assertFileEqual(testout, expected_file)
|
|
|