mirror of
https://github.com/triqs/dft_tools
synced 2024-12-26 06:14:14 +01:00
e82d95d1a8
- add c14 include - the C++14 is lot more readable (due to generic lambda). - for mesh/product.hpp -> now 2 versions (C++14 and C++11 for temporary backward compatibility).
192 lines
7.9 KiB
C++
192 lines
7.9 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012-2013 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#pragma once
|
|
#include "./mesh_tools.hpp"
|
|
#include "../domains/product.hpp"
|
|
#include <triqs/utility/tuple_tools.hpp>
|
|
#include <triqs/utility/mini_vector.hpp>
|
|
#include <triqs/utility/c14.hpp>
|
|
namespace triqs {
|
|
namespace gfs {
|
|
|
|
/** Cartesian product of meshes */
|
|
template <typename... Meshes> struct mesh_product : tag::composite {
|
|
using domain_t = domain_product<typename Meshes::domain_t...>;
|
|
using index_t = std::c14::tuple<typename Meshes::index_t...>;
|
|
using m_tuple_t = std::tuple<Meshes...>;
|
|
using m_pt_tuple_t = std::tuple<typename Meshes::mesh_point_t...>;
|
|
using domain_pt_t = typename domain_t::point_t;
|
|
|
|
static constexpr int dim = sizeof...(Meshes);
|
|
|
|
mesh_product() {}
|
|
mesh_product(Meshes const &... meshes) : m_tuple(meshes...), _dom(meshes.domain()...) {}
|
|
|
|
domain_t const &domain() const { return _dom; }
|
|
m_tuple_t const &components() const { return m_tuple; }
|
|
m_tuple_t &components() { return m_tuple; }
|
|
|
|
/// size of the mesh is the product of size
|
|
size_t size() const {
|
|
return triqs::tuple::fold([](auto const &m, size_t R) { return R * m.size(); }, m_tuple, 1);
|
|
}
|
|
|
|
/// Conversions point <-> index <-> linear_index
|
|
typename domain_t::point_t index_to_point(index_t const &ind) const {
|
|
domain_pt_t res;
|
|
auto l = [](auto &p, auto const &m, auto const &i) { p = m.index_to_point(i); };
|
|
triqs::tuple::apply_on_zip(l, res, m_tuple, ind);
|
|
return res;
|
|
}
|
|
|
|
/// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....))
|
|
size_t index_to_linear(index_t const &ii) const {
|
|
auto l = [](auto const &m, auto const &i, size_t R) { return m.index_to_linear(i) + R * m.size(); };
|
|
return triqs::tuple::fold_on_zip(l,reverse(m_tuple), reverse(ii), size_t(0));
|
|
}
|
|
|
|
/// Flattening index to linear : index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....))
|
|
size_t mp_to_linear(m_pt_tuple_t const &mp) const {
|
|
auto l = [](auto const &m, auto const &p, size_t R) { return p.linear_index() + R * m.size(); };
|
|
return triqs::tuple::fold_on_zip(l, reverse(m_tuple), reverse(mp), size_t(0));
|
|
}
|
|
|
|
utility::mini_vector<size_t, dim> shape() const {
|
|
utility::mini_vector<size_t, dim> res;
|
|
auto l = [&res](auto const &m, int i) mutable { res[i] = m.size(); };
|
|
triqs::tuple::for_each_enumerate(m_tuple, l);
|
|
return res;
|
|
}
|
|
|
|
// Same but a variadic list of mesh_point_t
|
|
template <typename... MP> size_t mesh_pt_components_to_linear(MP const &... mp) const {
|
|
static_assert(std::is_same<std::tuple<MP...>, m_pt_tuple_t>::value, "Call incorrect ");
|
|
// static_assert(std::is_same< std::tuple<typename std::remove_cv<typename std::remove_reference<MP>::type>::type...>,
|
|
// m_pt_tuple_t>::value, "Call incorrect ");
|
|
return mp_to_linear(std::forward_as_tuple(mp...));
|
|
} // speed test ? or make a variadic fold...
|
|
|
|
/// The wrapper for the mesh point
|
|
class mesh_point_t : tag::mesh_point {
|
|
const mesh_product *m;
|
|
m_pt_tuple_t _c;
|
|
bool _atend;
|
|
struct F1 {
|
|
template <typename M> typename M::mesh_point_t operator()(M const &m) const { return {m}; }
|
|
};
|
|
|
|
public:
|
|
mesh_point_t() = default;
|
|
mesh_point_t(mesh_product const &m_, index_t index_)
|
|
: m(&m_)
|
|
, _c(triqs::tuple::apply_on_zip([](auto const & m, auto const & i) { return m[i]; }, m_.m_tuple, index_))
|
|
, _atend(false) {}
|
|
mesh_point_t(mesh_product const &m_) : m(&m_), _c(triqs::tuple::apply_on_tuple(F1(), m_.m_tuple)), _atend(false) {}
|
|
m_pt_tuple_t const &components_tuple() const { return _c; }
|
|
size_t linear_index() const { return m->mp_to_linear(_c); }
|
|
const mesh_product *mesh() const { return m; }
|
|
|
|
using cast_t = domain_pt_t;
|
|
operator cast_t() const { return m->index_to_point(index); }
|
|
|
|
// index[0] +=1; if index[0]==m.component[0].size() { index[0]=0; index[1] +=1; if ....} and so on until dim
|
|
void advance() {
|
|
auto l = [](auto &p, bool done) {
|
|
if (done) return true;
|
|
p.advance();
|
|
if (!p.at_end()) return true;
|
|
p.reset();
|
|
return false;
|
|
};
|
|
triqs::tuple::fold(l, _c, false);
|
|
}
|
|
|
|
// index_t index() const { return _index;} // not implemented yet
|
|
bool at_end() const { return _atend; }
|
|
|
|
void reset() {
|
|
_atend = false;
|
|
triqs::tuple::for_each(_c, [](auto &m) { m.reset(); });
|
|
}
|
|
}; // end mesh_point_t
|
|
|
|
/// Accessing a point of the mesh
|
|
mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); }
|
|
mesh_point_t operator()(typename Meshes::index_t... i) const { return (*this)[std::make_tuple(i...)]; }
|
|
|
|
/// Iterating on all the points...
|
|
using const_iterator = mesh_pt_generator<mesh_product>;
|
|
const_iterator begin() const { return const_iterator(this); }
|
|
const_iterator end() const { return const_iterator(this, true); }
|
|
const_iterator cbegin() const { return const_iterator(this); }
|
|
const_iterator cend() const { return const_iterator(this, true); }
|
|
|
|
/// Mesh comparison
|
|
friend bool operator==(mesh_product const &M1, mesh_product const &M2) { return M1.m_tuple == M2.m_tuple; }
|
|
|
|
/// Write into HDF5
|
|
friend void h5_write(h5::group fg, std::string subgroup_name, mesh_product const &m) {
|
|
h5::group gr = fg.create_group(subgroup_name);
|
|
auto l = [gr](auto const &m, int N) { h5_write(gr, "MeshComponent" + std::to_string(N), m); };
|
|
triqs::tuple::for_each_enumerate(m.components(), l);
|
|
}
|
|
|
|
/// Read from HDF5
|
|
friend void h5_read(h5::group fg, std::string subgroup_name, mesh_product &m) {
|
|
h5::group gr = fg.open_group(subgroup_name);
|
|
auto l = [gr](auto &m, int N) { h5_read(gr, "MeshComponent" + std::to_string(N), m); };
|
|
triqs::tuple::for_each_enumerate(m.components(), l);
|
|
}
|
|
|
|
/// BOOST Serialization
|
|
friend class boost::serialization::access;
|
|
template <class Archive> void serialize(Archive &ar, const unsigned int version) {
|
|
auto l = [&ar](auto &m, int N) { ar &boost::serialization::make_nvp("MeshComponent" + std::to_string(N), m); };
|
|
triqs::tuple::for_each_enumerate(m_tuple, l);
|
|
}
|
|
|
|
friend std::ostream &operator<<(std::ostream &sout, mesh_product const &m) { return sout << "Product Mesh"; }
|
|
|
|
private:
|
|
m_tuple_t m_tuple;
|
|
domain_t _dom;
|
|
};
|
|
|
|
template <int pos, typename P> decltype(auto) get_index(P const &p) {return std::get<pos>(p.components_tuple()).index();}
|
|
|
|
template <int pos, typename P> decltype(auto) get_point(P const &p) {
|
|
return std::get<pos>(p.mesh()->components()).index_to_point(std::get<pos>(p.components_tuple()).index());
|
|
}
|
|
|
|
template <int pos, typename P> decltype(auto) get_component(P const &p) { return std::get<pos>(p.components_tuple()); }
|
|
|
|
// Given a composite mesh m , and a linear array of storage A
|
|
// reinterpret_linear_array(m,A) returns a d-dimensionnal view of the array
|
|
// with indices egal to the indices of the components of the mesh.
|
|
// Very useful for slicing, currying functions.
|
|
template <typename... Meshes, typename T, ull_t OptionsFlags, ull_t To, int R, bool B, bool C>
|
|
arrays::array_view<T, sizeof...(Meshes) + R - 1, OptionsFlags, To, true, C>
|
|
reinterpret_linear_array(mesh_product<Meshes...> const &m, arrays::array_view<T, R, OptionsFlags, To, B, C> A) {
|
|
return {{join(m.shape(), get_shape(A).front_pop())}, A.storage()};
|
|
}
|
|
}
|
|
}
|