3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-04 02:25:48 +01:00
dft_tools/doc/reference/using_the_lib/profiling.rst
tayral edd1ff4529 Restructuring documentation.
A first general restructuration of the doc according to the pattern [tour|tutorial|reference].
In the reference part, objects are documented per topic.
In each topic, [definition|c++|python|hdf5] (not yet implemented)
2014-10-18 12:21:08 +01:00

40 lines
1.2 KiB
ReStructuredText

Profiling in C++ and Python
=============================
One can easily profile c++ and Python code using `Google perftools <http://code.google.com/p/gperftools/>`_. In Ubuntu: ::
libgoogle-perftools-dev
google-perftools
One must link the executable with the profiling library with the flag ``-lprofiler``.
C++
-------
First run the C++ executable (here ``simple_tests``) after setting the environment variable ``CPUPROFILE``: ::
CPUPROFILE=profile_test.prof ./simple_tests
Then, analyze the results (stored in `profile_test.prof`) with ``google-pprof``: ::
google-pprof --text ./simple_tests profile_test.prof | less
See the documentation of `Google perftools <http://code.google.com/p/gperftools/>`_ for more information.
Python
--------
One needs to install the python package `yep <https://pypi.python.org/pypi/yep>`_ (e.g ``easy_install yep``)
First, run your script (``my_test.py``): ::
pytriqs -myep -v my_test.py
Then, analyze the results (stored in `my_test.py.prof`) with ``google-pprof``: ::
google-pprof --text my_test.py my_test.py.prof | less
Alternatively, to view the results more graphically, run: ::
google-pprof --web my_test.py my_test.py.prof