mirror of
https://github.com/triqs/dft_tools
synced 2024-12-27 06:43:40 +01:00
186 lines
7.6 KiB
C++
186 lines
7.6 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
|
|
#include "fourier_matsubara.hpp"
|
|
#include <fftw3.h>
|
|
|
|
namespace triqs { namespace gfs {
|
|
|
|
namespace impl_local_matsubara {
|
|
|
|
inline dcomplex oneFermion(dcomplex a,double b,double tau,double beta) {
|
|
return -a*( b >=0 ? exp(-b*tau)/(1+exp(-beta*b)) : exp(b*(beta-tau))/(1+exp(beta*b)) );
|
|
}
|
|
|
|
inline dcomplex oneBoson(dcomplex a,double b,double tau,double beta) {
|
|
return a*( b >=0 ? exp(-b*tau)/(exp(-beta*b)-1) : exp(b*(beta-tau))/(1-exp(b*beta)) );
|
|
}
|
|
}
|
|
|
|
template<typename GfElementType> GfElementType convert_green ( dcomplex const& x) { return x;}
|
|
template<> double convert_green<double> ( dcomplex const& x) { return real(x);}
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
|
|
struct impl_worker {
|
|
|
|
tqa::vector<dcomplex> g_in, g_out;
|
|
|
|
void direct (gf_view<imfreq,scalar_valued> gw, gf_const_view<imtime,scalar_valued> gt) {
|
|
using namespace impl_local_matsubara;
|
|
auto ta = gt(freq_infty());
|
|
//TO BE MODIFIED AFTER SCALAR IMPLEMENTATION TODO
|
|
dcomplex d= ta(1)(0,0), A= ta.get_or_zero(2)(0,0), B = ta.get_or_zero(3)(0,0);
|
|
double b1=0, b2=0, b3=0;
|
|
dcomplex a1, a2, a3;
|
|
double beta=gt.mesh().domain().beta;
|
|
auto L = ( gt.mesh().kind() == full_bins ? gt.mesh().size()-1 : gt.mesh().size());
|
|
double fact= beta/ gt.mesh().size();
|
|
dcomplex iomega = dcomplex(0.0,1.0) * std::acos(-1) / beta;
|
|
dcomplex iomega2 = iomega * 2 * gt.mesh().delta() * ( gt.mesh().kind() == half_bins ? 0.5 : 0.0);
|
|
g_in.resize(gt.mesh().size());
|
|
g_out.resize(gw.mesh().size());
|
|
if (gw.domain().statistic == Fermion){
|
|
b1 = 0; b2 =1; b3 =-1;
|
|
a1 = d-B; a2 = (A+B)/2; a3 = (B-A)/2;
|
|
}
|
|
else {
|
|
b1 = -0.5; b2 =-1; b3 =1;
|
|
a1 = 4*(d-B)/3; a2 = B-(d+A)/2; a3 = d/6+A/2+B/3;
|
|
}
|
|
if (gw.domain().statistic == Fermion){
|
|
for (auto & t : gt.mesh())
|
|
g_in[t.index()] = fact * exp(iomega*t) * ( gt[t] - ( oneFermion(a1,b1,t,beta) + oneFermion(a2,b2,t,beta)+ oneFermion(a3,b3,t,beta) ) );
|
|
}
|
|
else {
|
|
for (auto & t : gt.mesh())
|
|
g_in[t.index()] = fact * ( gt[t] - ( oneBoson(a1,b1,t,beta) + oneBoson(a2,b2,t,beta) + oneBoson(a3,b3,t,beta) ) );
|
|
}
|
|
details::fourier_base(g_in, g_out, L, true);
|
|
for (auto & w : gw.mesh()) {
|
|
gw[w] = g_out( w.index() ) * exp(iomega2*w.index() ) + a1/(w-b1) + a2/(w-b2) + a3/(w-b3);
|
|
}
|
|
gw.singularity() = gt.singularity();// set tail
|
|
}
|
|
|
|
void inverse(gf_view<imtime,scalar_valued> gt, gf_const_view<imfreq,scalar_valued> gw){
|
|
using namespace impl_local_matsubara;
|
|
static bool Green_Function_Are_Complex_in_time = false;
|
|
// If the Green function are NOT complex, then one use the symmetry property
|
|
// fold the sum and get a factor 2
|
|
auto ta = gw(freq_infty());
|
|
//TO BE MODIFIED AFTER SCALAR IMPLEMENTATION TODO
|
|
dcomplex d= ta(1)(0,0), A= ta.get_or_zero(2)(0,0), B = ta.get_or_zero(3)(0,0);
|
|
double b1, b2, b3;
|
|
dcomplex a1, a2, a3;
|
|
|
|
double beta=gw.domain().beta;
|
|
size_t L= gt.mesh().size() - ( gt.mesh().kind() == full_bins ? 1 : 0); //L can be different from gt.mesh().size() (depending on the mesh kind) and is given to the FFT algorithm
|
|
dcomplex iomega = dcomplex(0.0,1.0) * std::acos(-1) / beta;
|
|
dcomplex iomega2 = -iomega * 2 * gt.mesh().delta() * (gt.mesh().kind() == half_bins ? 0.5 : 0.0) ;
|
|
double fact = (Green_Function_Are_Complex_in_time ? 1 : 2)/beta;
|
|
g_in.resize( gw.mesh().size());
|
|
g_out.resize(gt.mesh().size());
|
|
|
|
if (gw.domain().statistic == Fermion){
|
|
b1 = 0; b2 =1; b3 =-1;
|
|
a1 = d-B; a2 = (A+B)/2; a3 = (B-A)/2;
|
|
}
|
|
else {
|
|
b1 = -0.5; b2 =-1; b3 =1;
|
|
a1=4*(d-B)/3; a2=B-(d+A)/2; a3=d/6+A/2+B/3;
|
|
}
|
|
g_in() = 0;
|
|
for (auto & w: gw.mesh()) {
|
|
g_in[ w.index() ] = fact * exp(w.index()*iomega2) * ( gw[w] - (a1/(w-b1) + a2/(w-b2) + a3/(w-b3)) );
|
|
}
|
|
// for bosons GF(w=0) is divided by 2 to avoid counting it twice
|
|
if (gw.domain().statistic == Boson && !Green_Function_Are_Complex_in_time ) g_in(0) *= 0.5;
|
|
|
|
details::fourier_base(g_in, g_out, L, false);
|
|
|
|
// CORRECT FOR COMPLEX G(tau) !!!
|
|
typedef double gt_result_type;
|
|
//typedef typename gf<imtime>::mesh_type::gf_result_type gt_result_type;
|
|
if (gw.domain().statistic == Fermion){
|
|
for (auto & t : gt.mesh()){
|
|
gt[t] = convert_green<gt_result_type> ( g_out( t.index() == L ? 0 : t.index() ) * exp(-iomega*t)
|
|
+ oneFermion(a1,b1,t,beta) + oneFermion(a2,b2,t,beta)+ oneFermion(a3,b3,t,beta) );
|
|
}
|
|
}
|
|
else {
|
|
for (auto & t : gt.mesh())
|
|
gt[t] = convert_green<gt_result_type> ( g_out( t.index() == L ? 0 : t.index() )
|
|
+ oneBoson(a1,b1,t,beta) + oneBoson(a2,b2,t,beta) + oneBoson(a3,b3,t,beta) );
|
|
}
|
|
if (gt.mesh().kind() == full_bins)
|
|
gt.on_mesh(L) = -gt.on_mesh(0)-convert_green<gt_result_type>(ta(1)(0,0));
|
|
// set tail
|
|
gt.singularity() = gw.singularity();
|
|
}
|
|
|
|
};
|
|
|
|
void fourier_impl (gf_view<imfreq,scalar_valued> gw , gf_const_view<imtime,scalar_valued> gt, scalar_valued){
|
|
impl_worker w;
|
|
w.direct(gw,gt);
|
|
}
|
|
|
|
void fourier_impl (gf_view<imfreq,matrix_valued> gw , gf_const_view<imtime,matrix_valued> gt, matrix_valued){
|
|
impl_worker w;
|
|
for (size_t n1=0; n1<gt.data().shape()[1];n1++)
|
|
for (size_t n2=0; n2<gt.data().shape()[2];n2++){
|
|
auto gw_sl=slice_target_to_scalar(gw,n1,n2);
|
|
auto gt_sl=slice_target_to_scalar(gt,n1,n2);
|
|
w.direct(gw_sl, gt_sl);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
void inverse_fourier_impl (gf_view<imtime,scalar_valued> gt , gf_const_view<imfreq,scalar_valued> gw, scalar_valued){
|
|
impl_worker w;
|
|
w.inverse(gt,gw);
|
|
}
|
|
|
|
void inverse_fourier_impl (gf_view<imtime,matrix_valued> gt , gf_const_view<imfreq,matrix_valued> gw, matrix_valued){
|
|
impl_worker w;
|
|
for (size_t n1=0; n1<gw.data().shape()[1];n1++)
|
|
for (size_t n2=0; n2<gw.data().shape()[2];n2++){
|
|
auto gt_sl=slice_target_to_scalar(gt, n1, n2);
|
|
auto gw_sl=slice_target_to_scalar(gw, n1, n2);
|
|
w.inverse( gt_sl, gw_sl);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
void triqs_gf_view_assign_delegation( gf_view<imfreq,scalar_valued> g, gf_keeper<tags::fourier,imtime,scalar_valued> const & L) { fourier_impl ( g ,L.g, scalar_valued() ); }
|
|
void triqs_gf_view_assign_delegation( gf_view<imfreq,matrix_valued> g, gf_keeper<tags::fourier,imtime,matrix_valued> const & L) { fourier_impl ( g, L.g, matrix_valued() ); }
|
|
void triqs_gf_view_assign_delegation( gf_view<imtime,scalar_valued> g, gf_keeper<tags::fourier,imfreq,scalar_valued> const & L) { inverse_fourier_impl( g, L.g, scalar_valued() ); }
|
|
void triqs_gf_view_assign_delegation( gf_view<imtime,matrix_valued> g, gf_keeper<tags::fourier,imfreq,matrix_valued> const & L) { inverse_fourier_impl( g, L.g, matrix_valued() ); }
|
|
|
|
}}
|
|
|