mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 11:43:47 +01:00
38d89e2d01
- introducing scalar_valued gf - Change Fourier routines to run on scalar_valued, and then use those routines to run on matrix_valued. - Tools for slices of 2 variables functions
162 lines
6.0 KiB
C++
162 lines
6.0 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#ifndef TRIQS_GF_TWO_TIMES_H
|
|
#define TRIQS_GF_TWO_TIMES_H
|
|
#include "./tools.hpp"
|
|
#include "./gf.hpp"
|
|
#include "./retime.hpp"
|
|
#include "./meshes/product.hpp"
|
|
|
|
namespace triqs { namespace gf {
|
|
|
|
struct two_real_times {};
|
|
|
|
namespace gf_implementation {
|
|
|
|
// the mesh
|
|
template<typename Opt> struct mesh<two_real_times,Opt> {
|
|
typedef typename mesh<retime,Opt>::type m1_t;
|
|
typedef mesh_product<m1_t,m1_t> type;
|
|
static type make (double tmax, double n_time_slices) {
|
|
#ifndef TRIQS_WORKAROUND_INTEL_COMPILER_BUGS
|
|
m1_t m1({},0, tmax,n_time_slices, triqs::gf::full_bins);
|
|
return {m1,m1};
|
|
#else
|
|
m1_t m1(typename m1_t::domain_t(),0, tmax,n_time_slices, triqs::gf::full_bins);
|
|
type m(m1,m1);
|
|
return m;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
// h5 name
|
|
template<typename Opt> struct h5_name<two_real_times,matrix_valued,Opt> { static std::string invoke(){ return "GfTwoRealTime";}};
|
|
|
|
/// --------------------------- closest mesh point on the grid ---------------------------------
|
|
|
|
template<typename Opt>
|
|
struct get_closest_point <two_real_times,matrix_valued,Opt> {
|
|
typedef typename mesh<two_real_times, Opt>::type mesh_t;
|
|
|
|
// NOT FINISHED, NOT TESTED
|
|
template<typename G, typename T>
|
|
static typename mesh_t::index_t invoke(G const * g, closest_pt_wrap<T,T> const & p) {
|
|
double x = (g->mesh().kind()==half_bins ? double(p.value) : double(p.value)+ 0.5*g->mesh().delta());
|
|
size_t n = std::floor(x/g->mesh().delta());
|
|
return n;
|
|
}
|
|
|
|
};
|
|
|
|
/// --------------------------- evaluator ---------------------------------
|
|
|
|
template<typename Opt>
|
|
struct evaluator<two_real_times,matrix_valued,Opt> {
|
|
static constexpr int arity = 2;
|
|
template<typename G>
|
|
arrays::matrix<std::complex<double> > operator() (G const * g, double t0, double t1) const {
|
|
auto & data = g->data();
|
|
auto & m = std::get<0>(g->mesh().components());
|
|
size_t n0,n1; double w0,w1; bool in;
|
|
std::tie(in, n0, w0) = windowing(m,t0);
|
|
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
|
|
std::tie(in, n1, w1) = windowing(m,t1);
|
|
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
|
|
auto gg = [g,data]( size_t n0, size_t n1) {return data(g->mesh().index_to_linear(std::tuple<size_t,size_t>{n0,n1}), arrays::ellipsis());};
|
|
return w0 * ( w1*gg(n0,n1) + (1-w1)*gg(n0,n1+1) ) + (1-w0) * ( w1*gg(n0+1,n1) + (1-w1)*gg(n0+1,n1+1));
|
|
}
|
|
};
|
|
|
|
/// --------------------------- data access ---------------------------------
|
|
|
|
template<typename Opt> struct data_proxy<two_real_times,matrix_valued,Opt> : data_proxy_array<std::complex<double>,3> {};
|
|
|
|
// ------------------------------- Factories --------------------------------------------------
|
|
|
|
template<typename Opt> struct factories<two_real_times, matrix_valued,Opt> {
|
|
typedef gf<two_real_times, matrix_valued,Opt> gf_t;
|
|
typedef typename mesh<two_real_times, Opt>::type mesh_t;
|
|
|
|
static gf_t make_gf(double tmax, double n_time_slices, tqa::mini_vector<size_t,2> shape) {
|
|
auto m = mesh<two_real_times,Opt>::make(tmax, n_time_slices);
|
|
typename gf_t::data_non_view_t A(shape.front_append(m.size())); A() =0;
|
|
return gf_t (m, std::move(A), nothing(), nothing() ) ;
|
|
}
|
|
};
|
|
|
|
// ------------------------------- Path --------------------------------------------------
|
|
/*
|
|
struct path {
|
|
|
|
typedef typename mesh_t::index_t mesh_pt_t;
|
|
typedef triqs::arrays::mini_vector<long,2> delta_t;
|
|
|
|
delta_t pt, delta;
|
|
size_t L;
|
|
|
|
path( mesh_t const & m, pt_t const & start_pt, delta_t const & d_) : pt(start_pt), delta(d_), L(std::get<1>(m.components()).size()){}
|
|
|
|
void advance() { pt += delta;}
|
|
|
|
bool out_of_mesh () const { return (! ( (pt[1]>=0) && ( pt[0] >= pt[1]) && (pt[0]<= L)));}
|
|
|
|
typedef mesh_pt_generator<path> iterator;
|
|
iterator begin() const { return {this, false};}
|
|
iterator end() const { return {this, true};}
|
|
|
|
};
|
|
|
|
path make_path ( mesh_t const & m, typename mesh_t::index_t starting_point, delta) {
|
|
return path(m, starting_point,delta);
|
|
}
|
|
|
|
// for (auto & p : make_path(G.mesh(), make_tuple(i,j), make_tuple(di,dj) )) G(p) +=0;
|
|
*/
|
|
|
|
} // gf_implementation
|
|
|
|
// ------------------------------- Additionnal free function for this gf --------------------------------------------------
|
|
|
|
// from g(t,t') and t, return g(t-t') for any t'>t
|
|
//
|
|
gf<retime> slice (gf_view<two_real_times> const & g, double t) {
|
|
auto const & m = std::get<0> (g.mesh().components()); //one-time mesh
|
|
long it = get_closest_mesh_pt_index(m, t); //index of t on this mesh
|
|
long nt = m.size() - it;
|
|
if (it+1 < nt) nt = it+1 ; //nt=length of the resulting GF's mesh
|
|
double dt = m.delta();
|
|
auto res = make_gf<retime>(0, 2*(nt-1)*dt, nt, g(t,t).shape());
|
|
res() = 0;
|
|
auto _ = arrays::range();// everyone
|
|
for(long sh=0; sh<nt; sh++){
|
|
res.data()(sh,_,_) = g.data()(g.mesh().index_to_linear(std::make_tuple( it+sh, it-sh) ),_,_);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Get the 1 time mesh from the 2 times cartesian product (for cython interface mainly)
|
|
template<typename M>
|
|
auto get_1d_mesh_from_2times_mesh(M const & m) DECL_AND_RETURN(std::get<0>(m.components()));
|
|
|
|
}}
|
|
#endif
|
|
|