mirror of
https://github.com/triqs/dft_tools
synced 2025-01-18 00:21:54 +01:00
1110 lines
51 KiB
Fortran
1110 lines
51 KiB
Fortran
|
|
c ******************************************************************************
|
|
c
|
|
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
c
|
|
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
|
c
|
|
c TRIQS is free software: you can redistribute it and/or modify it under the
|
|
c terms of the GNU General Public License as published by the Free Software
|
|
c Foundation, either version 3 of the License, or (at your option) any later
|
|
c version.
|
|
c
|
|
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
c details.
|
|
c
|
|
c You should have received a copy of the GNU General Public License along with
|
|
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
c
|
|
c *****************************************************************************/
|
|
|
|
SUBROUTINE density(tetr,only_corr,qtot,ifprnt)
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
C %% %%
|
|
C %% This subroutine computes the density matrices for all the %%
|
|
C %% inlcuded orbitals and the corresponding total charge, within %%
|
|
C %% the energy window for which the projectors were previously %%
|
|
C %% defined. %%
|
|
C %% %%
|
|
C %% If tetr = .TRUE., the tetrahedron weights are used. %%
|
|
C %% = .FALSE., a simple point integration is used. %%
|
|
C %% %%
|
|
C %% If only_corr = .TRUE., the calculation is performed for the %%
|
|
C %% correlated orbitals only. %%
|
|
C %% %%
|
|
C %% If ifprnt = .TRUE., the density matrices are written in the %%
|
|
C %% file case.outdmftpr. %%
|
|
C %% %%
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
C Definition of the variables :
|
|
C ----------------------------
|
|
USE almblm_data
|
|
USE common_data
|
|
USE prnt
|
|
USE projections
|
|
USE reps
|
|
USE symm
|
|
IMPLICIT NONE
|
|
LOGICAL :: tetr, only_corr, ifprnt
|
|
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: D
|
|
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: conj_mat, mat
|
|
INTEGER :: is, is1, ik, iorb, l, nbnd, iss
|
|
INTEGER :: lm, i, icrorb, m1, m2, m, ib
|
|
INTEGER :: iatom, jatom, jorb, imu, isrt, isym
|
|
INTEGER :: istart, istart1
|
|
INTEGER :: nbbot, nbtop
|
|
REAL(KIND=8) :: q, qtot
|
|
C
|
|
WRITE(buf,'(a)')'Evaluation of the density matrices...'
|
|
CALL printout(0)
|
|
CALL printout(0)
|
|
C
|
|
C Initialization of the variable nsp and of the table crdensmat
|
|
C nsp describes the number of block necessary to describe the complete density matrix.
|
|
nsp=ns
|
|
IF(ifSO) nsp=4
|
|
C The only possible cases are therefore :
|
|
C nsp=1 for a computation without spin-polarized input files, without SO [block (up/up+dn/dn)]
|
|
C nsp=2 for a computation with spin-polarized input files (but without SO) [blocks up/up and dn/dn]
|
|
C nsp=4 for a computation (with spin-polarized input files) with SO [all the blocks]
|
|
C
|
|
C
|
|
C =============================================================
|
|
C Computation of the density matrices for correlated orbitals :
|
|
C =============================================================
|
|
C
|
|
C These computations are performed only if there are correlated orbitals in the system.
|
|
IF(ncrorb.NE.0) THEN
|
|
C crdensmat is a table of size nsp*ncrorb.
|
|
C For each correlated orbital icrorb, crdensmat(:,icrorb) is the corresponding density matrix.
|
|
IF(.NOT.ALLOCATED(crdensmat)) THEN
|
|
ALLOCATE(crdensmat(nsp,ncrorb))
|
|
ENDIF
|
|
DO icrorb=1,ncrorb
|
|
DO is=1,nsp
|
|
IF(ALLOCATED(crdensmat(is,icrorb)%mat))
|
|
& DEALLOCATE(crdensmat(is,icrorb)%mat)
|
|
ALLOCATE(crdensmat(is,icrorb)%mat(1,1))
|
|
crdensmat(is,icrorb)%mat(1,1)=0.d0
|
|
ENDDO
|
|
ENDDO
|
|
C
|
|
C Loop on the correlated orbitals icrorb
|
|
C
|
|
DO icrorb=1,ncrorb
|
|
isrt=crorb(icrorb)%sort
|
|
l=crorb(icrorb)%l
|
|
C
|
|
C -----------------------------------------------------------------------------------
|
|
C The s-orbitals are a particular case of a "non-mixing" basis and are treated here :
|
|
C -----------------------------------------------------------------------------------
|
|
IF (l==0) THEN
|
|
C The field mat of crdensmat has already the good size (1 scalar element).
|
|
C There's no need of a basis change since the representation of an s-orbital is Identity whatever the basis is.
|
|
DO ik=1,nk
|
|
DO iss=1,nsp
|
|
C
|
|
C Determination of the block indices :
|
|
C ------------------------------------
|
|
IF(iss.LE.2) THEN
|
|
is=iss
|
|
is1=iss
|
|
C If iss=1 (up), is=1 and is1=1 -> Description of the up/up block
|
|
C If iss=2 (down), is=2 and is1=2 -> Description of the dn/dn block
|
|
ELSE
|
|
is=iss-2
|
|
is1=3-is
|
|
C If iss=3, is=1 (up) and is1=2 (down) -> Description of the up/dn block
|
|
C If iss=4, is=2 (down) and is1=1 (up) -> Description of the dn/up block
|
|
ENDIF
|
|
C Only the k-points with included bands are considered for the projectors.
|
|
IF(.NOT.kp(ik,is)%included) CYCLE
|
|
IF(.NOT.kp(ik,is1)%included) CYCLE
|
|
nbnd=kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1
|
|
nbbot=kp(ik,is)%nb_bot
|
|
nbtop=kp(ik,is)%nb_top
|
|
C for the diagonal blocks, is=is1 ; thus nbtop and nbtop are the same for is and is1.
|
|
C for the off-diagonal blocks (calculated only when SO is considered),
|
|
C it was checked that nbtop(up)=nbtop(dn) and nbbot(up)=nbbot(dn) [in set_projections.f]
|
|
C thus nbtop and nbtop fit again for is and is1.
|
|
C
|
|
C Computation of the density matrix using the tetrahedron weights for the integration :
|
|
C -------------------------------------------------------------------------------------
|
|
IF(tetr) THEN
|
|
C The field pr_crorb%mat_rep is used to perform the computation (well defined for s-orbitals)
|
|
ALLOCATE(mat(1,nbbot:nbtop),conj_mat(1,nbbot:nbtop))
|
|
mat(1,nbbot:nbtop)=
|
|
& pr_crorb(icrorb,ik,is)%mat_rep(1,nbbot:nbtop)*
|
|
& SQRT(kp(ik,is)%tetrweight(nbbot:nbtop))
|
|
conj_mat(1,nbbot:nbtop)=CONJG(
|
|
& pr_crorb(icrorb,ik,is1)%mat_rep(1,nbbot:nbtop))*
|
|
& SQRT(kp(ik,is1)%tetrweight(nbbot:nbtop))
|
|
C mat = P(icrorb,ik,is)*sqrt(tetrahedron-weight(ik,is))
|
|
C conj_mat = conjugate[ P(icrorb,ik,is1)) ]*sqrt(tetrahedron-weight(ik,is1))
|
|
DO ib = nbbot,nbtop
|
|
crdensmat(iss,icrorb)%mat(1,1)=
|
|
= crdensmat(iss,icrorb)%mat(1,1)+
|
|
+ mat(1,ib)*conj_mat(1,ib)
|
|
ENDDO
|
|
C crdensmat = mat*transpose(conj_mat) which is a matrix of size 1
|
|
C The summation over the k-points is done with the do loop ;
|
|
C crdensmat(iss,icrorb) is therefore the block "iss" of the density matrix for the orbital icrorb.
|
|
DEALLOCATE(conj_mat,mat)
|
|
C
|
|
C Computation of the density matrix using a simple point integration :
|
|
C --------------------------------------------------------------------
|
|
ELSE
|
|
DO ib = nbbot, nbtop
|
|
crdensmat(iss,icrorb)%mat(1,1)=
|
|
= crdensmat(iss,icrorb)%mat(1,1)+
|
|
+ pr_crorb(icrorb,ik,is)%mat_rep(1,ib)*
|
|
* CONJG(pr_crorb(icrorb,ik,is1)%mat_rep(1,ib))*
|
|
* kp(ik,is)%weight
|
|
ENDDO
|
|
C crdensmat = P(icrorb,ik,is)*transpose(conjugate(P(icrorb,ik,is1)))*weight(ik,is) which is a matrix of size 1.
|
|
C The weight used is a geometric factor associated to k and does not depend on the variable is.
|
|
C That's why we merely multiply by the "weight" each term while summing over the k-points.
|
|
ENDIF
|
|
ENDDO ! End of the iss loop
|
|
ENDDO ! End of the ik loop
|
|
C
|
|
C -----------------------------------------------------------------------------------------------------
|
|
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) :
|
|
C -----------------------------------------------------------------------------------------------------
|
|
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
|
C If this option is used, then ifSO=.TRUE. (because of the restriction in set_ang_trans.f)
|
|
C Moreover ifSP=.TRUE. (since ifSO => ifSP, in this version)
|
|
C As a result, we know that nb_bot(up)=nb_bot(dn) and nb_top(up)=nb_top(dn)
|
|
C
|
|
C The field mat of crdensmat must be resized.
|
|
C As the complete spinor rotation approach is used, only one matrix is necessary (with is=1).
|
|
DEALLOCATE(crdensmat(1,icrorb)%mat)
|
|
ALLOCATE(crdensmat(1,icrorb)%mat(1:2*(2*l+1),1:2*(2*l+1)))
|
|
crdensmat(1,icrorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=0.d0
|
|
ALLOCATE(D(1:2*(2*l+1),1:2*(2*l+1)))
|
|
C
|
|
C Computation of the density matrix using the tetrahedron weights for the integration :
|
|
C -------------------------------------------------------------------------------------
|
|
IF(tetr) THEN
|
|
DO ik=1,nk
|
|
C Only the k-points with inlcuded bands are considered for the projectors.
|
|
IF(.NOT.kp(ik,1)%included) CYCLE
|
|
nbnd=kp(ik,1)%nb_top-kp(ik,1)%nb_bot+1
|
|
nbbot=kp(ik,1)%nb_bot
|
|
nbtop=kp(ik,1)%nb_top
|
|
C A distinction between up and dn states is necessary in order to use the tetrahedron weight.
|
|
C As a result, we will transform the projectors back in spherical harmonics basis
|
|
C to perform the calculation and then put the resulting density matrix in the desired basis.
|
|
C
|
|
ALLOCATE(mat(1:2*(2*l+1),nbbot:nbtop))
|
|
ALLOCATE(conj_mat(1:2*(2*l+1),nbbot:nbtop))
|
|
C The representation of the projectors is put back in the spherical harmonics basis
|
|
mat(1:2*(2*l+1),nbbot:nbtop)=MATMUL(TRANSPOSE(CONJG(
|
|
= reptrans(l,isrt)%transmat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)))),pr_crorb(icrorb,ik,1)%
|
|
& mat_rep(1:2*(2*l+1),nbbot:nbtop))
|
|
C mat = inverse(reptrans)*pr_crorb%mat_rep = <lm|new_i>*proj_{new_i} = proj_{lm} [temporarily]
|
|
conj_mat(1:2*(2*l+1),nbbot:nbtop)=MATMUL(
|
|
& TRANSPOSE(CONJG(reptrans(l,isrt)%
|
|
& transmat(1:2*(2*l+1),1:2*(2*l+1)) )),
|
|
& pr_crorb(icrorb,ik,1)%mat_rep
|
|
& (1:2*(2*l+1),nbbot:nbtop))
|
|
C conj_mat = inverse(reptrans)*pr_crorb%mat_rep = <lm|new_i>*proj_{new_i} = proj_{lm} [temporarily]
|
|
DO m=1,2*l+1
|
|
mat(m,nbbot:nbtop)=mat(m,nbbot:nbtop)*
|
|
& SQRT(kp(ik,1)%tetrweight(nbbot:nbtop))
|
|
C The first (2*l+1) lines are associated to up states. Hence a multiplication by tetrweight(up)
|
|
mat((2*l+1)+m,nbbot:nbtop)=
|
|
= mat((2*l+1)+m,nbbot:nbtop)*
|
|
& SQRT(kp(ik,2)%tetrweight(nbbot:nbtop))
|
|
C The last (2*l+1) lines are associated to dn states. Hence a multiplication by tetrweight(dn)
|
|
C mat = P(icrorb,ik,is)*sqrt(tetrahedron-weight(ik,is))
|
|
conj_mat(m,nbbot:nbtop)=
|
|
= CONJG(conj_mat(m,nbbot:nbtop))*
|
|
& SQRT(kp(ik,1)%tetrweight(nbbot:nbtop))
|
|
C The first (2*l+1) lines are associated to up states. Hence a multiplication by tetrweight(up)
|
|
conj_mat((2*l+1)+m,nbbot:nbtop)=
|
|
& CONJG(conj_mat((2*l+1)+m,nbbot:nbtop))*
|
|
& SQRT(kp(ik,2)%tetrweight(nbbot:nbtop))
|
|
C The last (2*l+1) lines are associated to dn states. Hence a multiplication by tetrweight(dn)
|
|
C conj_mat = conjugate[ P(icrorb,ik,is1))*sqrt(tetrahedron-weight(ik,is1)) ]
|
|
ENDDO
|
|
CALL zgemm('N','T',2*(2*l+1),2*(2*l+1),nbnd,
|
|
& DCMPLX(1.D0,0.D0),mat,2*(2*l+1),conj_mat,2*(2*l+1),
|
|
& DCMPLX(0.D0,0.D0),D,2*(2*l+1))
|
|
DEALLOCATE(conj_mat,mat)
|
|
C D = mat*transpose(conj_mat) is a matrix of size 2*(2*l+1)* 2*(2*l+1)
|
|
C
|
|
crdensmat(1,icrorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
|
& crdensmat(1,icrorb)%mat(1:2*(2*l+1),1:2*(2*l+1))
|
|
& +D(1:2*(2*l+1),1:2*(2*l+1))
|
|
END DO ! End of the ik loop
|
|
C The summation over the k-points is done.
|
|
C crdensmat(icrorb) is therefore the complete density matrix in spherical harmonic basis.
|
|
C
|
|
C The density matrix is then put into the desired basis, using reptrans(l,isrt)%transmat
|
|
crdensmat(1,icrorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
|
= MATMUL(reptrans(l,isrt)%transmat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)),crdensmat(1,icrorb)%mat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)) )
|
|
crdensmat(1,icrorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
|
= MATMUL(crdensmat(1,icrorb)%mat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)),TRANSPOSE( CONJG(
|
|
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)))))
|
|
C crdensmat = (reptrans)*crdensmat_l*inverse(reptrans)
|
|
C or crdensmat = <new_i|lm> crdensmat_{lm} <lm|new_i>
|
|
C crdensmat(icrorb) is now the complete density matrix in the desired basis.
|
|
C
|
|
C Computation of the density matrix using a simple point integration :
|
|
C --------------------------------------------------------------------
|
|
ELSE
|
|
C No distinction between up and dn states is necessary because we use a
|
|
C geometric factor which depends only of the k-point.
|
|
C We can then use directly the projectors in the desired basis.
|
|
DO ik=1,nk
|
|
C Only the k-points with inlcuded bands are considered for the projectors.
|
|
IF(.NOT.kp(ik,1)%included) CYCLE
|
|
nbnd=kp(ik,1)%nb_top-kp(ik,1)%nb_bot+1
|
|
nbbot=kp(ik,1)%nb_bot
|
|
nbtop=kp(ik,1)%nb_top
|
|
ALLOCATE(mat(1:2*(2*l+1),nbbot:nbtop))
|
|
mat(1:2*(2*l+1),nbbot:nbtop)=
|
|
= pr_crorb(icrorb,ik,1)%mat_rep(1:2*(2*l+1),
|
|
& nbbot:nbtop)
|
|
CALL zgemm('N','C',2*(2*l+1),2*(2*l+1),nbnd,
|
|
& DCMPLX(1.D0,0.D0),mat,2*(2*l+1),mat,2*(2*l+1),
|
|
& DCMPLX(0.D0,0.D0),D,2*(2*l+1))
|
|
DEALLOCATE(mat)
|
|
C D = P(icrorb,ik,is)*transpose(conjugate(P(icrorb,ik,is))) is a matrix of size 2*(2*l+1) * 2*(2*l+1)
|
|
crdensmat(1,icrorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
|
= crdensmat(1,icrorb)%mat(1:2*(2*l+1),1:2*(2*l+1))
|
|
+ +D(1:2*(2*l+1),1:2*(2*l+1))*kp(ik,1)%weight
|
|
ENDDO ! End of the ik loop
|
|
C The summation over the k-points is done in the do loop.
|
|
C The weight used is a geometric factor associated to k and does not depend on the variable is.
|
|
C That's why we merely multiply by the "weight" each term while summing over the k-points.
|
|
ENDIF
|
|
DEALLOCATE(D)
|
|
C
|
|
C ----------------------------------------------------------------------------------------------
|
|
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) :
|
|
C ----------------------------------------------------------------------------------------------
|
|
ELSE
|
|
C The field mat of crdensmat must be resized.
|
|
C nsp matrices of size (2*l+1) are necessary to represent the whole density matrix.
|
|
DO is=1,nsp
|
|
DEALLOCATE(crdensmat(is,icrorb)%mat)
|
|
ALLOCATE(crdensmat(is,icrorb)%mat(-l:l,-l:l))
|
|
crdensmat(is,icrorb)%mat(-l:l,-l:l)=0.d0
|
|
ENDDO
|
|
ALLOCATE(D(-l:l,-l:l))
|
|
C All the computations can be performed in the new basis (using the field pr_crorb%mat_rep)
|
|
DO ik=1,nk
|
|
DO iss=1,nsp
|
|
C
|
|
C Determination of the block indices :
|
|
C ------------------------------------
|
|
IF(iss.LE.2) THEN
|
|
is=iss
|
|
is1=iss
|
|
C If iss=1 (up), is=1 and is1=1 -> Description of the up/up block
|
|
C If iss=2 (down), is=2 and is1=2 -> Description of the dn/dn block
|
|
ELSE
|
|
is=iss-2
|
|
is1=3-is
|
|
C If iss=3, is=1 (up) and is1=2 (down) -> Description of the up/dn block
|
|
C If iss=4, is=2 (down) and is1=1 (up) -> Description of the dn/up block
|
|
ENDIF
|
|
C Only the k-points with inlcuded bands are considered for the projectors.
|
|
IF(.NOT.kp(ik,is)%included) CYCLE
|
|
IF(.NOT.kp(ik,is1)%included) CYCLE
|
|
nbnd=kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1
|
|
nbbot=kp(ik,is)%nb_bot
|
|
nbtop=kp(ik,is)%nb_top
|
|
C for the diagonal blocks, is=is1 ; thus nbtop and nbtop are the same for is and is1.
|
|
C for the off-diagonal blocks (calculated only when SO is considered),
|
|
C it was checked that nbtop(up)=nbtop(dn) and nbbot(up)=nbbot(dn) [in set_projections.f]
|
|
C thus nbtop and nbtop fit again for is and is1.
|
|
C
|
|
C Computation of the density matrix using the tetrahedron weights for the integration :
|
|
C -------------------------------------------------------------------------------------
|
|
IF(tetr) THEN
|
|
C The representation of the projectors in the desired basis is used (field pr_crorb%mat_rep)
|
|
ALLOCATE(mat(-l:l,nbbot:nbtop))
|
|
ALLOCATE(conj_mat(-l:l,nbbot:nbtop))
|
|
DO m=-l,l
|
|
mat(m,nbbot:nbtop)=
|
|
= pr_crorb(icrorb,ik,is)%mat_rep(m,nbbot:nbtop)*
|
|
& SQRT(kp(ik,is)%tetrweight(nbbot:nbtop))
|
|
conj_mat(m,nbbot:nbtop)=CONJG(
|
|
& pr_crorb(icrorb,ik,is1)%mat_rep(m,nbbot:nbtop))
|
|
& *SQRT(kp(ik,is1)%tetrweight(nbbot:nbtop))
|
|
C mat = P(icrorb,ik,is)*sqrt(tetrahedron-weight(ik,is))
|
|
C conj_mat = conjugate[ P(icrorb,ik,is1))*sqrt(tetrahedron-weight(ik,is1)) ]
|
|
ENDDO
|
|
CALL zgemm('N','T',(2*l+1),(2*l+1),nbnd,
|
|
& DCMPLX(1.D0,0.D0),mat,(2*l+1),conj_mat,(2*l+1),
|
|
& DCMPLX(0.D0,0.D0),D(-l:l,-l:l),(2*l+1))
|
|
DEALLOCATE(conj_mat,mat)
|
|
C D = mat*transpose(conj_mat) is a matrix of size (2*l+1)*(2*l+1)
|
|
crdensmat(iss,icrorb)%mat(-l:l,-l:l)=
|
|
= crdensmat(iss,icrorb)%mat(-l:l,-l:l)+D(-l:l,-l:l)
|
|
C The summation over the k-points is done.
|
|
C crdensmat(icrorb) is therefore the complete density matrix of the orbital icrorb.
|
|
C
|
|
C Computation of the density matrix using a simple point integration :
|
|
C --------------------------------------------------------------------
|
|
ELSE
|
|
ALLOCATE(mat(-l:l,nbbot:nbtop))
|
|
ALLOCATE(conj_mat(-l:l,nbbot:nbtop))
|
|
mat(-l:l,nbbot:nbtop)=pr_crorb(icrorb,ik,is)
|
|
& %mat_rep(-l:l,nbbot:nbtop)
|
|
conj_mat(-l:l,nbbot:nbtop)=pr_crorb(icrorb,ik,is1)
|
|
& %mat_rep(-l:l,nbbot:nbtop)
|
|
CALL zgemm('N','C',(2*l+1),(2*l+1),nbnd,
|
|
& DCMPLX(1.D0,0.D0),mat,(2*l+1),conj_mat,(2*l+1),
|
|
& DCMPLX(0.D0,0.D0),D(-l:l,-l:l),(2*l+1))
|
|
DEALLOCATE(mat,conj_mat)
|
|
C D = P(icrorb,ik,is)*transpose(conjugate(P(icrorb,ik,is))) is a matrix of size (2*l+1)*(2*l+1)
|
|
crdensmat(iss,icrorb)%mat(-l:l,-l:l)=
|
|
= crdensmat(iss,icrorb)%mat(-l:l,-l:l)
|
|
+ +D(-l:l,-l:l)*kp(ik,is)%weight
|
|
C The weight used is a geometric factor asoociated to k and does not depend on the variable is.
|
|
C That's why we merely multiply by the "weight" each term while summing over the k-points.
|
|
ENDIF
|
|
ENDDO ! End of the iss loop
|
|
ENDDO ! End of the ik loop
|
|
DEALLOCATE(D)
|
|
ENDIF ! End of the basis if-then-else
|
|
C
|
|
ENDDO ! End of the icrorb loop
|
|
C
|
|
C
|
|
C ===============================
|
|
C Symmetrization to the full BZ :
|
|
C ===============================
|
|
CALL symmetrize_mat(crdensmat,crorb,ncrorb)
|
|
C
|
|
C
|
|
C ============================================================================
|
|
C Application of the Rloc transformation to go back to the local coordinates :
|
|
C ============================================================================
|
|
CALL rotdens_mat(crdensmat,crorb,ncrorb)
|
|
C
|
|
C
|
|
C =================================================================
|
|
C Printing the density matrices and the charge in the output file :
|
|
C =================================================================
|
|
IF(ifprnt) THEN
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)') '-------------------------------------'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)')
|
|
& 'Density Matrices for the Correlated States : '
|
|
CALL printout(0)
|
|
C The density matrices and charge are printed for all the corrrelated orbitals
|
|
DO icrorb=1,ncrorb
|
|
CALL printout(0)
|
|
isrt=crorb(icrorb)%sort
|
|
l=crorb(icrorb)%l
|
|
C Description of the correlated orbital
|
|
WRITE(buf,'(3(a,i3))')
|
|
& ' Sort = ',isrt,' Atom = ',crorb(icrorb)%atom,
|
|
& ' and Orbital l = ',l
|
|
CALL printout(0)
|
|
q=0d0
|
|
C
|
|
C The case l=0 is a particular case of "non-mixing" basis.
|
|
C --------------------------------------------------------
|
|
IF (l==0) THEN
|
|
C For a calculation spin-polarized with SO :
|
|
IF (nsp==4) THEN
|
|
WRITE(buf,'(2(2F12.6,2x))')
|
|
& crdensmat(1,icrorb)%mat(1,1),
|
|
& crdensmat(3,icrorb)%mat(1,1)
|
|
CALL printout(0)
|
|
WRITE(buf,'(2(2F12.6,2x))')
|
|
& crdensmat(4,icrorb)%mat(1,1),
|
|
& crdensmat(2,icrorb)%mat(1,1)
|
|
CALL printout(0)
|
|
q=q+crdensmat(1,icrorb)%mat(1,1)+
|
|
+ crdensmat(2,icrorb)%mat(1,1)
|
|
C For a calculation spin-polarized without SO :
|
|
ELSE IF (nsp==2) THEN
|
|
WRITE(buf,'(2(2F12.6,2x))')
|
|
& crdensmat(1,icrorb)%mat(1,1),DCMPLX(0.D0,0.D0)
|
|
CALL printout(0)
|
|
WRITE(buf,'(2(2F12.6,2x))')
|
|
& DCMPLX(0.D0,0.D0),crdensmat(2,icrorb)%mat(1,1)
|
|
CALL printout(0)
|
|
q=q+crdensmat(1,icrorb)%mat(1,1)+
|
|
+ crdensmat(2,icrorb)%mat(1,1)
|
|
C For a paramagnetic calculation without SO :
|
|
ELSE
|
|
WRITE(buf,'(2F12.6,2x)') crdensmat(1,icrorb)%mat(1,1)
|
|
CALL printout(0)
|
|
q=q+crdensmat(1,icrorb)%mat(1,1)
|
|
ENDIF
|
|
C
|
|
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
|
|
C ---------------------------------------------------------------------------------------------
|
|
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
|
C In this case, the calculation is necessary spin-polarized with SO :
|
|
WRITE(buf,'(a,a)') 'Writing the matrix as : ',
|
|
& '[ block 1 | block 2 ] with'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a,a)') ' ',
|
|
& '[ block 3 | block 4 ]'
|
|
CALL printout(0)
|
|
C Printing the different blocks
|
|
ALLOCATE(D(1,1:2*l+1))
|
|
WRITE(buf,'(a,i2,a)') ' # For the block 1 :'
|
|
CALL printout(0)
|
|
DO m=1,2*l+1
|
|
D(1,1:2*l+1)=crdensmat(1,icrorb)%mat(m,1:(2*l+1))
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
ENDDO
|
|
WRITE(buf,'(a,i2,a)') ' # For the block 2 :'
|
|
CALL printout(0)
|
|
DO m=1,2*l+1
|
|
D(1,1:2*l+1)=
|
|
& crdensmat(1,icrorb)%mat(m,2*l+2:2*(2*l+1))
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
ENDDO
|
|
WRITE(buf,'(a,i2,a)') ' # For the block 3 :'
|
|
CALL printout(0)
|
|
DO m=2*l+2,2*(2*l+1)
|
|
D(1,1:2*l+1)=
|
|
& crdensmat(1,icrorb)%mat(m,1:(2*l+1))
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
ENDDO
|
|
WRITE(buf,'(a,i2,a)') ' # For the block 4 :'
|
|
CALL printout(0)
|
|
DO m=2*l+2,2*(2*l+1)
|
|
D(1,1:2*l+1)=
|
|
& crdensmat(1,icrorb)%mat(m,2*l+2:2*(2*l+1))
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
ENDDO
|
|
DEALLOCATE(D)
|
|
DO m1=1,2*(2*l+1)
|
|
q=q+crdensmat(1,icrorb)%mat(m1,m1)
|
|
ENDDO
|
|
C
|
|
C If the basis representation can be reduce to the up/up block (basis without "mixing").
|
|
C --------------------------------------------------------------------------------------
|
|
ELSE
|
|
IF(nsp==4) THEN
|
|
WRITE(buf,'(a,a)') 'Writing the matrix as : ',
|
|
& '[ block up/up | block up/dn ] with'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a,a)') ' ',
|
|
& '[ block dn/up | block dn/dn ]'
|
|
CALL printout(0)
|
|
ELSEIF(nsp==2) THEN
|
|
WRITE(buf,'(a,a)') 'Writing the matrix as : ',
|
|
& '[ block up/up | 0 ] with'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a,a)') ' ',
|
|
& '[ 0 | block dn/dn ]'
|
|
CALL printout(0)
|
|
ENDIF
|
|
DO iss=1,nsp
|
|
IF(iss.LE.2) THEN
|
|
is=iss
|
|
is1=iss
|
|
C If iss=1 (up), is=1 and is1=1 -> Description of the up/up block
|
|
C If iss=2 (down), is=2 and is1=2 -> Description of the down/down block
|
|
IF (is==1) THEN
|
|
IF ( ifSP.or.ifSO ) THEN
|
|
WRITE(buf,'(a)') ' # For the Up/Up block :'
|
|
ENDIF
|
|
CALL printout(0)
|
|
ELSE
|
|
WRITE(buf,'(a)') ' # For the Down/Down block :'
|
|
CALL printout(0)
|
|
ENDIF
|
|
ELSE
|
|
is=iss-2
|
|
is1=3-is
|
|
C If iss=3, is=1 (up) and is1=2 (down) -> Description of the up/down block
|
|
C If iss=4, is=2 (down) and is1=1 (up) -> Description of the down/up block
|
|
IF (is==1) THEN
|
|
WRITE(buf,'(a)') ' # For the Up/Down block :'
|
|
CALL printout(0)
|
|
ELSE
|
|
WRITE(buf,'(a)') ' # For the Down/Up block :'
|
|
CALL printout(0)
|
|
ENDIF
|
|
ENDIF
|
|
ALLOCATE(D(1,-l:l))
|
|
DO m=-l,l
|
|
D(1,-l:l)=crdensmat(iss,icrorb)%mat(m,-l:l)
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
IF(is==is1) q=q+crdensmat(iss,icrorb)%mat(m,m)
|
|
ENDDO
|
|
DEALLOCATE(D)
|
|
ENDDO
|
|
ENDIF
|
|
C Displaying the charge q of the orbital
|
|
CALL printout(0)
|
|
WRITE(buf,'(a,f10.5)')'The charge of the orbital is : ',q
|
|
CALL printout(0)
|
|
ENDDO
|
|
ENDIF
|
|
C
|
|
ENDIF ! End of the if ncrorb=0 if-then-else
|
|
C The calculation is stopped here if the flag only_corr is .TRUE.
|
|
IF (.not.only_corr) THEN
|
|
C
|
|
C =========================================
|
|
C Computation of the total charge density :
|
|
C =========================================
|
|
C The charge is stored in the variable qtot given in argument.
|
|
qtot=0d0
|
|
do is=1,ns
|
|
DO ik=1,nk
|
|
if (kp(ik,is)%included) then
|
|
DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top
|
|
IF(tetr) THEN
|
|
qtot=qtot+kp(ik,is)%tetrweight(ib)
|
|
ELSE
|
|
qtot=qtot+kp(ik,is)%weight
|
|
ENDIF
|
|
ENDDO
|
|
endif
|
|
ENDDO
|
|
if (ifSO) exit
|
|
enddo
|
|
C
|
|
C =================================================================
|
|
C Computation of the density matrix for all the included orbitals :
|
|
C =================================================================
|
|
C The computations are performed with the Theta projectors (pr_orb)
|
|
C
|
|
C densmat is a table of size nsp*norb.
|
|
C For each included orbital iorb, densmat(:,iorb) is the corresponding density matrix.
|
|
IF(.NOT.ALLOCATED(densmat)) THEN
|
|
ALLOCATE(densmat(nsp,norb))
|
|
ENDIF
|
|
DO iorb=1,norb
|
|
DO is=1,nsp
|
|
IF(ALLOCATED(densmat(is,iorb)%mat))
|
|
& DEALLOCATE(densmat(is,iorb)%mat)
|
|
ALLOCATE(densmat(is,iorb)%mat(1,1))
|
|
densmat(is,iorb)%mat(1,1)=0.d0
|
|
ENDDO
|
|
ENDDO
|
|
C
|
|
C Loop on the included orbitals iorb
|
|
C
|
|
DO iorb=1,norb
|
|
isrt=orb(iorb)%sort
|
|
l=orb(iorb)%l
|
|
C
|
|
C -----------------------------------------------------------------------------------
|
|
C The s-orbitals are a particular case of a "non-mixing" basis and are treated here :
|
|
C -----------------------------------------------------------------------------------
|
|
IF (l==0) THEN
|
|
C The field mat of densmat has already the good size (1 scalar element).
|
|
C There's no need of a basis change since the representation of an s-orbital is Identity whatever the basis is.
|
|
DO ik=1,nk
|
|
DO iss=1,nsp
|
|
C
|
|
C Determination of the block indices :
|
|
C ------------------------------------
|
|
IF(iss.LE.2) THEN
|
|
is=iss
|
|
is1=iss
|
|
C If iss=1 (up), is=1 and is1=1 -> Description of the up/up block
|
|
C If iss=2 (down), is=2 and is1=2 -> Description of the dn/dn block
|
|
ELSE
|
|
is=iss-2
|
|
is1=3-is
|
|
C If iss=3, is=1 (up) and is1=2 (down) -> Description of the up/dn block
|
|
C If iss=4, is=2 (down) and is1=1 (up) -> Description of the dn/up block
|
|
ENDIF
|
|
C Only the k-points with inlcuded bands are considered for the projectors.
|
|
IF(.NOT.kp(ik,is)%included) CYCLE
|
|
IF(.NOT.kp(ik,is1)%included) CYCLE
|
|
nbnd=kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1
|
|
nbbot=kp(ik,is)%nb_bot
|
|
nbtop=kp(ik,is)%nb_top
|
|
C for the diagonal blocks, is=is1 ; thus nbtop and nbtop are the same for is and is1.
|
|
C for the off-diagonal blocks (calculated only when SO is considered),
|
|
C it was checked that nbtop(up)=nbtop(dn) and nbbot(up)=nbbot(dn) [in set_projections.f]
|
|
C thus nbtop and nbtop fit again for is and is1.
|
|
C
|
|
C Computation of the density matrix using the tetrahedron weights for the integration :
|
|
C -------------------------------------------------------------------------------------
|
|
IF(tetr) THEN
|
|
C The field pr_orb%matn_rep is used to perform the computation (well defined for s-orbitals)
|
|
DO i=1,norm_radf(iorb)%n
|
|
ALLOCATE(mat(1,nbbot:nbtop))
|
|
ALLOCATE(conj_mat(1,nbbot:nbtop))
|
|
mat(1,nbbot:nbtop)=
|
|
& pr_orb(iorb,ik,is)%matn_rep(1,nbbot:nbtop,i)*
|
|
& SQRT(kp(ik,is)%tetrweight(nbbot:nbtop))
|
|
conj_mat(1,nbbot:nbtop)=CONJG(
|
|
& pr_orb(iorb,ik,is1)%matn_rep(1,nbbot:nbtop,i))*
|
|
& SQRT(kp(ik,is1)%tetrweight(nbbot:nbtop))
|
|
C mat = Theta(iorb,ik,is)*sqrt(tetrahedron-weight(ik,is))
|
|
C conj_mat = conjugate[ Theta(iorb,ik,is1))*sqrt(tetrahedron-weight(ik,is1)) ]
|
|
DO ib = nbbot,nbtop
|
|
densmat(iss,iorb)%mat(1,1)=
|
|
= densmat(iss,iorb)%mat(1,1)
|
|
& +mat(1,ib)*conj_mat(1,ib)
|
|
ENDDO
|
|
C densmat = mat*transpose(conj_mat) which is a matrix of size 1
|
|
DEALLOCATE(conj_mat,mat)
|
|
ENDDO
|
|
C The summation over the k-points is done with the do loop ;
|
|
C The summation over the |phi_j> basis is done with the do loop ;
|
|
C densmat(iss,iorb) is therefore the block "iss" of the density matrix for the orbital iorb.
|
|
C
|
|
C Computation of the density matrix using a simple point integration :
|
|
C --------------------------------------------------------------------
|
|
ELSE
|
|
DO i=1,norm_radf(iorb)%n
|
|
DO ib = nbbot,nbtop
|
|
densmat(iss,iorb)%mat(1,1)=
|
|
= densmat(iss,iorb)%mat(1,1)+
|
|
+ pr_orb(iorb,ik,is)%matn_rep(1,ib,i)*
|
|
* CONJG(pr_orb(iorb,ik,is1)%matn_rep(1,ib,i))*
|
|
* kp(ik,is)%weight
|
|
ENDDO
|
|
ENDDO
|
|
C densmat = Theta(iorb,ik,is)*transpose(conjugate(Theta(iorb,ik,is1))) which is a matrix of size 1
|
|
C The weight used is a geometric factor associated to k and does not depend on the variable is.
|
|
C That's why we merely multiply by the "weight" each term while summing over the k-points.
|
|
ENDIF
|
|
ENDDO ! End of the iss loop
|
|
ENDDO ! End of the ik loop
|
|
C
|
|
C -----------------------------------------------------------------------------------------------------
|
|
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) :
|
|
C -----------------------------------------------------------------------------------------------------
|
|
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
|
C If this option is used, then ifSO=.TRUE. (because of the restriction in set_ang_trans.f)
|
|
C Moreover ifSP=.TRUE. (since ifSO => ifSP, in this version)
|
|
C As a result, we know that nb_bot(up)=nb_bot(dn) and nb_top(up)=nb_top(dn)
|
|
C
|
|
C The field mat of densmat must be resized.
|
|
C As the complete spinor rotation approach is used, only one matrix is necessary (with is=1).
|
|
DEALLOCATE(densmat(1,iorb)%mat)
|
|
ALLOCATE(densmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1)))
|
|
densmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=0.d0
|
|
ALLOCATE(D(1:2*(2*l+1),1:2*(2*l+1)))
|
|
C
|
|
C Computation of the density matrix using the tetrahedron weights for the integration :
|
|
C -------------------------------------------------------------------------------------
|
|
IF(tetr) THEN
|
|
DO ik=1,nk
|
|
C Only the k-points with inlcuded bands are considered for the projectors.
|
|
IF(.NOT.kp(ik,1)%included) CYCLE
|
|
nbnd=kp(ik,1)%nb_top-kp(ik,1)%nb_bot+1
|
|
nbbot=kp(ik,1)%nb_bot
|
|
nbtop=kp(ik,1)%nb_top
|
|
C A distinction between up and dn states is necessary in order to use the tetrahedron weight.
|
|
C As a result, we will transform the projectors back in spherical harmonics basis
|
|
C to perform the calculation and then put the resulting density matrix in the desired basis.
|
|
C
|
|
C Loop on the |phi_j> basis
|
|
DO i=1,norm_radf(iorb)%n
|
|
ALLOCATE(mat(1:2*(2*l+1),nbbot:nbtop))
|
|
ALLOCATE(conj_mat(1:2*(2*l+1),nbbot:nbtop))
|
|
C The representation of the projectors is put back in the spherical harmonics basis
|
|
mat(1:2*(2*l+1),nbbot:nbtop)=MATMUL(
|
|
& TRANSPOSE(CONJG(reptrans(l,isrt)%
|
|
& transmat(1:2*(2*l+1),1:2*(2*l+1)) )),
|
|
& pr_orb(iorb,ik,1)%matn_rep
|
|
& (1:2*(2*l+1),nbbot:nbtop,i) )
|
|
C mat = inverse(reptrans)*pr_orb%mat_rep = <lm|new_i>*theta_{new_i} = theta_{lm} [temporarily]
|
|
conj_mat(1:2*(2*l+1),nbbot:nbtop)=MATMUL(
|
|
& TRANSPOSE(CONJG(reptrans(l,isrt)%
|
|
& transmat(1:2*(2*l+1),1:2*(2*l+1)) )),
|
|
& pr_orb(iorb,ik,1)%matn_rep
|
|
& (1:2*(2*l+1),nbbot:nbtop,i) )
|
|
C conj_mat = inverse(reptrans)*pr_orb%mat_rep = <lm|new_i>*theta_{new_i} = theta_{lm} [temporarily]
|
|
DO m=1,2*l+1
|
|
mat(m,nbbot:nbtop)=mat(m,nbbot:nbtop)*
|
|
& SQRT(kp(ik,1)%tetrweight(nbbot:nbtop))
|
|
C The first (2*l+1) lines are associated to up states. Hence a multiplication by tetrweight(up)
|
|
mat((2*l+1)+m,nbbot:nbtop)=
|
|
= mat((2*l+1)+m,nbbot:nbtop)*
|
|
& SQRT(kp(ik,2)%tetrweight(nbbot:nbtop))
|
|
C The last (2*l+1) lines are associated to dn states. Hence a multiplication by tetrweight(dn)
|
|
C mat = Theta(icrorb,ik,is)*sqrt(tetrahedron-weight(ik,is))
|
|
conj_mat(m,nbbot:nbtop)=CONJG(
|
|
& conj_mat(m,nbbot:nbtop) )*
|
|
& SQRT(kp(ik,1)%tetrweight(nbbot:nbtop))
|
|
C The first (2*l+1) lines are associated to up states. Hence a multiplication by tetrweight(up)
|
|
conj_mat((2*l+1)+m,nbbot:nbtop)=
|
|
& CONJG(conj_mat((2*l+1)+m,nbbot:nbtop))*
|
|
& SQRT(kp(ik,2)%tetrweight(nbbot:nbtop))
|
|
C The last (2*l+1) lines are associated to dn states. Hence a multiplication by tetrweight(dn)
|
|
C conj_mat = conjugate[ Theta(icrorb,ik,is1))*sqrt(tetrahedron-weight(ik,is1)) ]
|
|
ENDDO
|
|
CALL zgemm('N','T',2*(2*l+1),2*(2*l+1),nbnd,
|
|
& DCMPLX(1.D0,0.D0),mat,2*(2*l+1),conj_mat,2*(2*l+1),
|
|
& DCMPLX(0.D0,0.D0),D,2*(2*l+1))
|
|
DEALLOCATE(conj_mat,mat)
|
|
C D = mat*transpose(conj_mat) is a matrix of size 2*(2*l+1)* 2*(2*l+1)
|
|
C
|
|
densmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
|
& densmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1))
|
|
& +D(1:2*(2*l+1),1:2*(2*l+1))
|
|
END DO ! End of the |phi_j> basis loop
|
|
END DO ! End of the ik loop
|
|
C The summation over the k-points is done ;
|
|
C The summation over the |phi_j> basis is done ;
|
|
C crdensmat(icrorb) is therefore the complete density matrix in spherical harmonic basis.
|
|
C
|
|
C The density matrix is then put into the desired basis, using reptrans(l,isrt)%transmat
|
|
densmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
|
= MATMUL(reptrans(l,isrt)%transmat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)),densmat(1,iorb)%mat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)) )
|
|
densmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
|
= MATMUL(densmat(1,iorb)%mat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)),TRANSPOSE( CONJG(
|
|
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)))))
|
|
C densmat = (reptrans)*densmat_l*inverse(reptrans)
|
|
C or densmat = <new_i|lm> densmat_{lm} <lm|new_i>
|
|
C densmat(iorb) is now the complete density matrix in the desired basis.
|
|
C
|
|
C Computation of the density matrix using a simple point integration :
|
|
C --------------------------------------------------------------------
|
|
ELSE
|
|
C No distinction between up and dn states is necessary because we use a
|
|
C geometric factor which depends only of the k-point.
|
|
C We can then use directly the projectors in the desired basis.
|
|
DO ik=1,nk
|
|
C Only the k-points with inlcuded bands are considered for the projectors.
|
|
IF(.NOT.kp(ik,1)%included) CYCLE
|
|
C Loop on the |phi_j> basis
|
|
DO i=1,norm_radf(iorb)%n
|
|
nbnd=kp(ik,1)%nb_top-kp(ik,1)%nb_bot+1
|
|
nbbot=kp(ik,1)%nb_bot
|
|
nbtop=kp(ik,1)%nb_top
|
|
ALLOCATE(mat(1:2*(2*l+1),nbbot:nbtop))
|
|
mat(1:2*(2*l+1),nbbot:nbtop)=
|
|
= pr_orb(iorb,ik,1)%matn_rep
|
|
& (1:2*(2*l+1),nbbot:nbtop,i)
|
|
CALL zgemm('N','C',2*(2*l+1),2*(2*l+1),nbnd,
|
|
& DCMPLX(1.D0,0.D0),mat,2*(2*l+1),mat,
|
|
& 2*(2*l+1),DCMPLX(0.D0,0.D0),D,2*(2*l+1))
|
|
DEALLOCATE(mat)
|
|
C D = Theta(iorb,ik,is)*transpose(conjugate(Theta(iorb,ik,is))) is a matrix of size 2*(2*l+1) * 2*(2*l+1)
|
|
densmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
|
= densmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1))
|
|
+ +D(1:2*(2*l+1),1:2*(2*l+1))*kp(ik,1)%weight
|
|
END DO ! End of the |phi_j > basis loop
|
|
ENDDO ! End of the ik loop
|
|
C The summation over the k-points is done ;
|
|
C The summation over the |phi_j> basis is done ;
|
|
C The weight used is a geometric factor associated to k and does not depend on the variable is.
|
|
C That's why we merely multiply by the "weight" each term while summing over the k-points.
|
|
ENDIF
|
|
DEALLOCATE(D)
|
|
C
|
|
C ----------------------------------------------------------------------------------------------
|
|
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) :
|
|
C ----------------------------------------------------------------------------------------------
|
|
ELSE
|
|
C The field mat of densmat must be resized.
|
|
C nsp matrices of size (2*l+1) are necessary to represent the whole density matrix.
|
|
DO is=1,nsp
|
|
DEALLOCATE(densmat(is,iorb)%mat)
|
|
ALLOCATE(densmat(is,iorb)%mat(-l:l,-l:l))
|
|
densmat(is,iorb)%mat(-l:l,-l:l)=0.d0
|
|
ENDDO
|
|
ALLOCATE(D(-l:l,-l:l))
|
|
C All the computations can be performed in the new basis (using the field pr_orb%matn_rep)
|
|
DO ik=1,nk
|
|
DO iss=1,nsp
|
|
C
|
|
C Determination of the block indices :
|
|
C ------------------------------------
|
|
IF(iss.LE.2) THEN
|
|
is=iss
|
|
is1=iss
|
|
C If iss=1 (up), is=1 and is1=1 -> Description of the up/up block
|
|
C If iss=2 (down), is=2 and is1=2 -> Description of the dn/dn block
|
|
ELSE
|
|
is=iss-2
|
|
is1=3-is
|
|
C If iss=3, is=1 (up) and is1=2 (down) -> Description of the up/dn block
|
|
C If iss=4, is=2 (down) and is1=1 (up) -> Description of the dn/up block
|
|
ENDIF
|
|
C Only the k-points with inlcuded bands are considered for the projectors.
|
|
IF(.NOT.kp(ik,is)%included) CYCLE
|
|
IF(.NOT.kp(ik,is1)%included) CYCLE
|
|
nbnd=kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1
|
|
nbbot=kp(ik,is)%nb_bot
|
|
nbtop=kp(ik,is)%nb_top
|
|
C for the diagonal blocks, is=is1 ; thus nbtop and nbtop are the same for is and is1.
|
|
C for the off-diagonal blocks (calculated only when SO is considered),
|
|
C it was checked that nbtop(up)=nbtop(dn) and nbbot(up)=nbbot(dn) [in set_projections.f]
|
|
C thus nbtop and nbtop fit again for is and is1.
|
|
C
|
|
C Computation of the density matrix using the tetrahedron weights for the integration :
|
|
C -------------------------------------------------------------------------------------
|
|
IF(tetr) THEN
|
|
C The representation of the projectors in the desired basis is used (field pr_orb%mat_rep)
|
|
DO i=1,norm_radf(iorb)%n
|
|
ALLOCATE(mat(-l:l,nbbot:nbtop))
|
|
ALLOCATE(conj_mat(-l:l,nbbot:nbtop))
|
|
DO m=-l,l
|
|
mat(m,nbbot:nbtop)=pr_orb(iorb,ik,is)%matn_rep
|
|
& (m,nbbot:nbtop,i)*SQRT(kp(ik,is)%
|
|
& tetrweight(nbbot:nbtop))
|
|
conj_mat(m,nbbot:nbtop)=CONJG(
|
|
= pr_orb(iorb,ik,is1)%matn_rep(m,nbbot:nbtop,i))
|
|
& *SQRT(kp(ik,is1)%tetrweight(nbbot:nbtop))
|
|
C mat = Theta(iorb,ik,is)*sqrt(tetrahedron-weight(ik,is))
|
|
C conj_mat = conjugate[ Theta(iorb,ik,is1))*sqrt(tetrahedron-weight(ik,is1)) ]
|
|
ENDDO
|
|
CALL zgemm('N','T',(2*l+1),(2*l+1),nbnd,
|
|
& DCMPLX(1.D0,0.D0),mat,(2*l+1),conj_mat,(2*l+1),
|
|
& DCMPLX(0.D0,0.D0),D(-l:l,-l:l),(2*l+1))
|
|
DEALLOCATE(conj_mat,mat)
|
|
C D = mat*transpose(conj_mat) is a matrix of size (2*l+1)*(2*l+1)
|
|
densmat(iss,iorb)%mat(-l:l,-l:l)=
|
|
= densmat(iss,iorb)%mat(-l:l,-l:l)+D(-l:l,-l:l)
|
|
ENDDO
|
|
C The summation over the |phi_j > basis is done.
|
|
C The summation over the k-points is done.
|
|
C densmat(iorb) is therefore the complete density matrix of the orbital iorb.
|
|
C
|
|
C Computation of the density matrix using a simple point integration :
|
|
C --------------------------------------------------------------------
|
|
ELSE
|
|
DO i=1,norm_radf(iorb)%n
|
|
ALLOCATE(mat(-l:l,nbbot:nbtop))
|
|
ALLOCATE(conj_mat(-l:l,nbbot:nbtop))
|
|
mat(-l:l,nbbot:nbtop)=
|
|
= pr_orb(iorb,ik,is)%matn_rep(-l:l,nbbot:nbtop,i)
|
|
conj_mat(-l:l,nbbot:nbtop)=
|
|
= pr_orb(iorb,ik,is1)%matn_rep(-l:l,nbbot:nbtop,i)
|
|
CALL zgemm('N','C',(2*l+1),(2*l+1),nbnd,
|
|
& DCMPLX(1.D0,0.D0),mat,(2*l+1),conj_mat,(2*l+1),
|
|
& DCMPLX(0.D0,0.D0),D(-l:l,-l:l),(2*l+1))
|
|
DEALLOCATE(mat,conj_mat)
|
|
C D = Theta(iorb,ik,is)*transpose(conjugate(Theta(iorb,ik,is))) is a matrix of size (2*l+1)*(2*l+1)
|
|
densmat(iss,iorb)%mat(-l:l,-l:l)=
|
|
= densmat(iss,iorb)%mat(-l:l,-l:l)
|
|
+ +D(-l:l,-l:l)*kp(ik,is)%weight
|
|
C The weight used is a geometric factor asoociated to k and does not depend on the variable is.
|
|
C That's why we merely multiply by the "weight" each term while summing over the k-points and the |phi_j> basis.
|
|
ENDDO ! End of the |phi_j > basis loop
|
|
ENDIF
|
|
ENDDO ! End of the iss loop
|
|
ENDDO ! End of the ik loop
|
|
DEALLOCATE(D)
|
|
C
|
|
ENDIF ! End of the basis if-then-else
|
|
C
|
|
ENDDO ! End of the iorb loop
|
|
C
|
|
C
|
|
C ===============================
|
|
C Symmetrization to the full BZ :
|
|
C ===============================
|
|
CALL symmetrize_mat(densmat,orb,norb)
|
|
C
|
|
C
|
|
C ============================================================================
|
|
C Application of the Rloc transformation to go back to the local coordinates :
|
|
C ============================================================================
|
|
CALL rotdens_mat(densmat,orb,norb)
|
|
C
|
|
C
|
|
C =================================================================
|
|
C Printing the density matrices and the charge in the output file :
|
|
C =================================================================
|
|
IF(ifprnt) THEN
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)') '-------------------------------------'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)')
|
|
& 'Density Matrices for all the States of the System : '
|
|
CALL printout(0)
|
|
C The density matrices and charge are printed for all the included orbitals
|
|
DO iorb=1,norb
|
|
CALL printout(0)
|
|
isrt=orb(iorb)%sort
|
|
l= orb(iorb)%l
|
|
C Description of the correlated orbital
|
|
WRITE(buf,'(3(a,i3))')
|
|
& ' Sort = ',isrt,' Atom = ',orb(iorb)%atom,
|
|
& ' and Orbital l = ',l
|
|
CALL printout(0)
|
|
q=0d0
|
|
C
|
|
C The case l=0 is a particular case of "non-mixing" basis.
|
|
C --------------------------------------------------------
|
|
IF (l==0) THEN
|
|
C For a calculation spin-polarized with SO :
|
|
IF (nsp==4) THEN
|
|
WRITE(buf,'(2(2F12.6,2x))')
|
|
& densmat(1,iorb)%mat(1,1),
|
|
& densmat(3,iorb)%mat(1,1)
|
|
CALL printout(0)
|
|
WRITE(buf,'(2(2F12.6,2x))')
|
|
& densmat(4,iorb)%mat(1,1),
|
|
& densmat(2,iorb)%mat(1,1)
|
|
CALL printout(0)
|
|
q=q+densmat(1,iorb)%mat(1,1)+
|
|
+ densmat(2,iorb)%mat(1,1)
|
|
C For a calculation spin-polarized without SO :
|
|
ELSE IF (nsp==2) THEN
|
|
WRITE(buf,'(2(2F12.6,2x))')
|
|
& densmat(1,iorb)%mat(1,1),DCMPLX(0.D0,0.D0)
|
|
CALL printout(0)
|
|
WRITE(buf,'(2(2F12.6,2x))')
|
|
& DCMPLX(0.D0,0.D0),densmat(2,iorb)%mat(1,1)
|
|
CALL printout(0)
|
|
q=q+densmat(1,iorb)%mat(1,1)+
|
|
+ densmat(2,iorb)%mat(1,1)
|
|
C For a paramagnetic calculation without SO :
|
|
ELSE
|
|
WRITE(buf,'(2F12.6,2x)') densmat(1,iorb)%mat(1,1)
|
|
q=q+densmat(1,iorb)%mat(1,1)
|
|
CALL printout(0)
|
|
ENDIF
|
|
C
|
|
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
|
|
C ---------------------------------------------------------------------------------------------
|
|
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
|
C In this case, the calculation is necessary spin-polarized with SO :
|
|
WRITE(buf,'(a,a)') 'Writing the matrix as : ',
|
|
& '[ block 1 | block 2 ] with'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a,a)') ' ',
|
|
& '[ block 3 | block 4 ]'
|
|
CALL printout(0)
|
|
C Printing the different blocks
|
|
ALLOCATE(D(1,1:2*l+1))
|
|
WRITE(buf,'(a,i2,a)') ' # For the block 1 :'
|
|
CALL printout(0)
|
|
DO m=1,2*l+1
|
|
D(1,1:2*l+1)=densmat(1,iorb)%mat(m,1:(2*l+1))
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
ENDDO
|
|
WRITE(buf,'(a,i2,a)') ' # For the block 2 :'
|
|
CALL printout(0)
|
|
DO m=1,2*l+1
|
|
D(1,1:2*l+1)=
|
|
& densmat(1,iorb)%mat(m,2*l+2:2*(2*l+1))
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
ENDDO
|
|
WRITE(buf,'(a,i2,a)') ' # For the block 3 :'
|
|
CALL printout(0)
|
|
DO m=2*l+2,2*(2*l+1)
|
|
D(1,1:2*l+1)=
|
|
& densmat(1,iorb)%mat(m,1:(2*l+1))
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
ENDDO
|
|
WRITE(buf,'(a,i2,a)') ' # For the block 4 :'
|
|
CALL printout(0)
|
|
DO m=2*l+2,2*(2*l+1)
|
|
D(1,1:2*l+1)=
|
|
& densmat(1,iorb)%mat(m,2*l+2:2*(2*l+1))
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
ENDDO
|
|
DEALLOCATE(D)
|
|
DO m1=1,2*(2*l+1)
|
|
q=q+densmat(1,iorb)%mat(m1,m1)
|
|
ENDDO
|
|
C
|
|
C If the basis representation can be reduce to the up/up block (basis without "mixing").
|
|
C --------------------------------------------------------------------------------------
|
|
ELSE
|
|
IF(nsp==4) THEN
|
|
WRITE(buf,'(a,a)') 'Writing the matrix as : ',
|
|
& '[ block up/up | block up/dn ] with'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a,a)') ' ',
|
|
& '[ block dn/up | block dn/dn ]'
|
|
CALL printout(0)
|
|
ELSEIF(nsp==2) THEN
|
|
WRITE(buf,'(a,a)') 'Writing the matrix as : ',
|
|
& '[ block up/up | 0 ] with'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a,a)') ' ',
|
|
& '[ 0 | block dn/dn ]'
|
|
CALL printout(0)
|
|
ENDIF
|
|
DO iss=1,nsp
|
|
IF(iss.LE.2) THEN
|
|
is=iss
|
|
is1=iss
|
|
C If iss=1 (up), is=1 and is1=1 -> Description of the up/up block
|
|
C If iss=2 (down), is=2 and is1=2 -> Description of the down/down block
|
|
IF (is==1) THEN
|
|
IF ( ifSP.or.ifSO ) THEN
|
|
WRITE(buf,'(a)') ' # For the Up/Up block :'
|
|
ENDIF
|
|
CALL printout(0)
|
|
ELSE
|
|
WRITE(buf,'(a)') ' # For the Down/Down block :'
|
|
CALL printout(0)
|
|
ENDIF
|
|
ELSE
|
|
is=iss-2
|
|
is1=3-is
|
|
C If iss=3, is=1 (up) and is1=2 (down) -> Description of the up/down block
|
|
C If iss=4, is=2 (down) and is1=1 (up) -> Description of the down/up block
|
|
IF (is==1) THEN
|
|
WRITE(buf,'(a)') ' # For the Up/Down block :'
|
|
CALL printout(0)
|
|
ELSE
|
|
WRITE(buf,'(a)') ' # For the Down/Up block :'
|
|
CALL printout(0)
|
|
ENDIF
|
|
ENDIF
|
|
ALLOCATE(D(1,-l:l))
|
|
DO m=-l,l
|
|
D(1,-l:l)=densmat(iss,iorb)%mat(m,-l:l)
|
|
WRITE(buf,'(7(2F12.6),x)') D(:,:)
|
|
CALL printout(0)
|
|
IF(is==is1) q=q+densmat(iss,iorb)%mat(m,m)
|
|
ENDDO
|
|
DEALLOCATE(D)
|
|
ENDDO
|
|
ENDIF
|
|
C Displaying the charge q of the orbital
|
|
CALL printout(0)
|
|
WRITE(buf,'(a,f10.5)')'The charge of the orbital is : ',q
|
|
CALL printout(0)
|
|
ENDDO
|
|
ENDIF
|
|
C
|
|
C ==========================================================================
|
|
C Printing the total charge in the output file (only if only_corr =.FALSE.):
|
|
C ==========================================================================
|
|
WRITE(buf,'(a,f11.5)')'TOTAL CHARGE = ',qtot
|
|
CALL printout(1)
|
|
C
|
|
ENDIF ! End of the .not.only_corr if-then-else
|
|
RETURN
|
|
END
|
|
|
|
|
|
|
|
|
|
|
|
|