mirror of
https://github.com/triqs/dft_tools
synced 2024-11-06 22:23:52 +01:00
561 lines
24 KiB
Python
561 lines
24 KiB
Python
|
|
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
|
|
from types import *
|
|
import numpy
|
|
import pytriqs.utility.dichotomy as dichotomy
|
|
from pytriqs.gf.local import *
|
|
import pytriqs.utility.mpi as mpi
|
|
from symmetry import *
|
|
from sumk_lda import SumkLDA
|
|
|
|
class SumkLDATools(SumkLDA):
|
|
"""Extends the SumkLDA class with some tools for analysing the data."""
|
|
|
|
|
|
def __init__(self, hdf_file, mu = 0.0, h_field = 0.0, use_lda_blocks = False, lda_data = 'lda_input', symmcorr_data = 'lda_symmcorr_input',
|
|
parproj_data = 'lda_parproj_input', symmpar_data = 'lda_symmpar_input', bands_data = 'lda_bands_input'):
|
|
|
|
self.G_upfold_refreq = None
|
|
SumkLDA.__init__(self, hdf_file=hdf_file, mu=mu, h_field=h_field, use_lda_blocks=use_lda_blocks,
|
|
lda_data=lda_data, symmcorr_data=symmcorr_data, parproj_data=parproj_data,
|
|
symmpar_data=symmpar_data, bands_data=bands_data)
|
|
|
|
|
|
def downfold_pc(self,ik,ir,ish,bname,gf_to_downfold,gf_inp):
|
|
"""Downfolding a block of the Greens function"""
|
|
|
|
gf_downfolded = gf_inp.copy()
|
|
isp = self.spin_names_to_ind[self.SO][bname] # get spin index for proj. matrices
|
|
dim = self.shells[ish][3]
|
|
n_orb = self.n_orbitals[ik,isp]
|
|
L=self.proj_mat_pc[ik,isp,ish,ir,0:dim,0:n_orb]
|
|
R=self.proj_mat_pc[ik,isp,ish,ir,0:dim,0:n_orb].conjugate().transpose()
|
|
gf_downfolded.from_L_G_R(L,gf_to_downfold,R)
|
|
|
|
return gf_downfolded
|
|
|
|
|
|
def rotloc_all(self,ish,gf_to_rotate,direction):
|
|
"""Local <-> Global rotation of a GF block.
|
|
direction: 'toLocal' / 'toGlobal' """
|
|
|
|
assert ((direction=='toLocal')or(direction=='toGlobal')),"Give direction 'toLocal' or 'toGlobal' in rotloc!"
|
|
|
|
|
|
gf_rotated = gf_to_rotate.copy()
|
|
if (direction=='toGlobal'):
|
|
if ((self.rot_mat_all_time_inv[ish]==1) and (self.SO)):
|
|
gf_rotated << gf_rotated.transpose()
|
|
gf_rotated.from_L_G_R(self.rot_mat_all[ish].conjugate(),gf_rotated,self.rot_mat_all[ish].transpose())
|
|
else:
|
|
gf_rotated.from_L_G_R(self.rot_mat_all[ish],gf_rotated,self.rot_mat_all[ish].conjugate().transpose())
|
|
|
|
elif (direction=='toLocal'):
|
|
if ((self.rot_mat_all_time_inv[ish]==1)and(self.SO)):
|
|
gf_rotated << gf_rotated.transpose()
|
|
gf_rotated.from_L_G_R(self.rot_mat_all[ish].transpose(),gf_rotated,self.rot_mat_all[ish].conjugate())
|
|
else:
|
|
gf_rotated.from_L_G_R(self.rot_mat_all[ish].conjugate().transpose(),gf_rotated,self.rot_mat_all[ish])
|
|
|
|
|
|
return gf_rotated
|
|
|
|
|
|
def lattice_gf_realfreq(self, ik, mu, broadening, mesh=None, with_Sigma=True):
|
|
"""Calculates the lattice Green function on the real frequency axis. If self energy is
|
|
present and with_Sigma=True, the mesh is taken from Sigma. Otherwise, the mesh has to be given."""
|
|
|
|
ntoi = self.spin_names_to_ind[self.SO]
|
|
bln = self.spin_block_names[self.SO]
|
|
|
|
if (not hasattr(self,"Sigma_imp")): with_Sigma=False
|
|
if (with_Sigma):
|
|
assert all(type(gf) == GfReFreq for bname,gf in self.Sigma_imp[0]), "Real frequency Sigma needed for lattice_gf_realfreq!"
|
|
stmp = self.add_dc()
|
|
else:
|
|
assert (not (mesh is None)),"Without Sigma, give the mesh=(om_min,om_max,n_points) for lattice_gf_realfreq!"
|
|
|
|
if (self.G_upfold_refreq is None):
|
|
# first setting up of G_upfold_refreq
|
|
block_structure = [ range(self.n_orbitals[ik,ntoi[b]]) for b in bln ]
|
|
gf_struct = [ (bln[ibl], block_structure[ibl]) for ibl in range(self.n_spin_blocks[self.SO]) ]
|
|
block_ind_list = [block for block,inner in gf_struct]
|
|
if (with_Sigma):
|
|
glist = lambda : [ GfReFreq(indices = inner, mesh =self.Sigma_imp[0].mesh) for block,inner in gf_struct]
|
|
else:
|
|
glist = lambda : [ GfReFreq(indices = inner, window=(mesh[0],mesh[1]),n_points=mesh[2]) for block,inner in gf_struct]
|
|
self.G_upfold_refreq = BlockGf(name_list = block_ind_list, block_list = glist(),make_copies=False)
|
|
self.G_upfold_refreq.zero()
|
|
|
|
GFsize = [ gf.N1 for bname,gf in self.G_upfold_refreq]
|
|
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ibl]]]==GFsize[ibl]
|
|
for ibl in range(self.n_spin_blocks[self.SO]) ] )
|
|
|
|
if (not unchangedsize):
|
|
block_structure = [ range(self.n_orbitals[ik,ntoi[b]]) for b in bln ]
|
|
gf_struct = [ (bln[ibl], block_structure[ibl]) for ibl in range(self.n_spin_blocks[self.SO]) ]
|
|
block_ind_list = [block for block,inner in gf_struct]
|
|
if (with_Sigma):
|
|
glist = lambda : [ GfReFreq(indices = inner, mesh =self.Sigma_imp[0].mesh) for block,inner in gf_struct]
|
|
else:
|
|
glist = lambda : [ GfReFreq(indices = inner, window=(mesh[0],mesh[1]),n_points=mesh[2]) for block,inner in gf_struct]
|
|
self.G_upfold_refreq = BlockGf(name_list = block_ind_list, block_list = glist(),make_copies=False)
|
|
self.G_upfold_refreq.zero()
|
|
|
|
idmat = [numpy.identity(self.n_orbitals[ik,ntoi[b]],numpy.complex_) for b in bln]
|
|
|
|
self.G_upfold_refreq << Omega + 1j*broadening
|
|
M = copy.deepcopy(idmat)
|
|
for ibl in range(self.n_spin_blocks[self.SO]):
|
|
ind = ntoi[bln[ibl]]
|
|
n_orb = self.n_orbitals[ik,ind]
|
|
M[ibl] = self.hopping[ik,ind,0:n_orb,0:n_orb] - (idmat[ibl]*mu) - (idmat[ibl] * self.h_field * (1-2*ibl))
|
|
self.G_upfold_refreq -= M
|
|
|
|
if (with_Sigma):
|
|
tmp = self.G_upfold_refreq.copy() # init temporary storage
|
|
for icrsh in xrange(self.n_corr_shells):
|
|
for bname,gf in tmp: tmp[bname] << self.upfold(ik,icrsh,bname,stmp[icrsh][bname],gf)
|
|
self.G_upfold_refreq -= tmp # adding to the upfolded GF
|
|
|
|
self.G_upfold_refreq.invert()
|
|
|
|
return self.G_upfold_refreq
|
|
|
|
|
|
|
|
def check_input_dos(self, om_min, om_max, n_om, beta=10, broadening=0.01):
|
|
|
|
|
|
delta_om = (om_max-om_min)/(n_om-1)
|
|
om_mesh = numpy.zeros([n_om],numpy.float_)
|
|
for i in range(n_om): om_mesh[i] = om_min + delta_om * i
|
|
|
|
DOS = {}
|
|
for bn in self.spin_block_names[self.SO]:
|
|
DOS[bn] = numpy.zeros([n_om],numpy.float_)
|
|
|
|
DOSproj = [ {} for icrsh in range(self.n_inequiv_corr_shells) ]
|
|
DOSproj_orb = [ {} for icrsh in range(self.n_inequiv_corr_shells) ]
|
|
for icrsh in range(self.n_inequiv_corr_shells):
|
|
for bn in self.spin_block_names[self.corr_shells[self.invshellmap[icrsh]][4]]:
|
|
dl = self.corr_shells[self.invshellmap[icrsh]][3]
|
|
DOSproj[icrsh][bn] = numpy.zeros([n_om],numpy.float_)
|
|
DOSproj_orb[icrsh][bn] = numpy.zeros([n_om,dl,dl],numpy.float_)
|
|
|
|
# init:
|
|
Gloc = []
|
|
for icrsh in range(self.n_corr_shells):
|
|
b_list = [block for block,inner in self.gf_struct_sumk[icrsh]]
|
|
#glist = lambda : [ GfReFreq(indices = inner, beta = beta, mesh_array = mesh) for block,inner in self.gf_struct_sumk[icrsh]]
|
|
glist = lambda : [ GfReFreq(indices = inner, window = (om_min,om_max), n_points = n_om) for block,inner in self.gf_struct_sumk[icrsh]]
|
|
Gloc.append(BlockGf(name_list = b_list, block_list = glist(),make_copies=False))
|
|
for icrsh in xrange(self.n_corr_shells): Gloc[icrsh].zero() # initialize to zero
|
|
|
|
for ik in xrange(self.n_k):
|
|
|
|
G_upfold=self.lattice_gf_realfreq(ik=ik,mu=self.chemical_potential,broadening=broadening,mesh=(om_min,om_max,n_om),with_Sigma=False)
|
|
G_upfold *= self.bz_weights[ik]
|
|
|
|
# non-projected DOS
|
|
for iom in range(n_om):
|
|
for bname,gf in G_upfold:
|
|
asd = gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
|
DOS[bname][iom] += asd
|
|
|
|
for icrsh in xrange(self.n_corr_shells):
|
|
tmp = Gloc[icrsh].copy()
|
|
for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_upfold[bname],gf) # downfolding G
|
|
Gloc[icrsh] += tmp
|
|
|
|
|
|
|
|
if (self.symm_op!=0): Gloc = self.symmcorr.symmetrize(Gloc)
|
|
|
|
if (self.use_rotations):
|
|
for icrsh in xrange(self.n_corr_shells):
|
|
for bname,gf in Gloc[icrsh]: Gloc[icrsh][bname] << self.rotloc(icrsh,gf,direction='toLocal')
|
|
|
|
# Gloc can now also be used to look at orbitally resolved quantities
|
|
for ish in range(self.n_inequiv_corr_shells):
|
|
for bname,gf in Gloc[self.invshellmap[ish]]: # loop over spins
|
|
for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
|
|
|
DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag/(-3.1415926535)
|
|
|
|
# output:
|
|
if (mpi.is_master_node()):
|
|
for bn in self.spin_block_names[self.SO]:
|
|
f=open('DOS%s.dat'%bn, 'w')
|
|
for i in range(n_om): f.write("%s %s\n"%(om_mesh[i],DOS[bn][i]))
|
|
f.close()
|
|
|
|
for ish in range(self.n_inequiv_corr_shells):
|
|
f=open('DOS%s_proj%s.dat'%(bn,ish),'w')
|
|
for i in range(n_om): f.write("%s %s\n"%(om_mesh[i],DOSproj[ish][bn][i]))
|
|
f.close()
|
|
|
|
for i in range(self.corr_shells[self.invshellmap[ish]][3]):
|
|
for j in range(i,self.corr_shells[self.invshellmap[ish]][3]):
|
|
Fname = 'DOS'+bn+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat'
|
|
f=open(Fname,'w')
|
|
for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj_orb[ish][bn][iom,i,j]))
|
|
f.close()
|
|
|
|
|
|
|
|
|
|
def read_parproj_input_from_hdf(self):
|
|
"""
|
|
Reads the data for the partial projectors from the HDF file
|
|
"""
|
|
|
|
things_to_read = ['dens_mat_below','n_parproj','proj_mat_pc','rot_mat_all','rot_mat_all_time_inv']
|
|
value_read = self.read_input_from_hdf(subgrp=self.parproj_data,things_to_read = things_to_read)
|
|
return value_read
|
|
|
|
|
|
|
|
def dos_partial(self,broadening=0.01):
|
|
"""calculates the orbitally-resolved DOS"""
|
|
|
|
assert hasattr(self,"Sigma_imp"), "Set Sigma First!!"
|
|
|
|
value_read = self.read_parproj_input_from_hdf()
|
|
if not value_read: return value_read
|
|
if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
|
|
|
|
mu = self.chemical_potential
|
|
|
|
gf_struct_proj = [ [ (b, range(self.shells[i][3])) for b in self.spin_block_names[self.SO] ] for i in xrange(self.n_shells) ]
|
|
Gproj = [BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp[0].mesh)) for block,inner in gf_struct_proj[ish] ], make_copies = False )
|
|
for ish in xrange(self.n_shells)]
|
|
for ish in range(self.n_shells): Gproj[ish].zero()
|
|
|
|
Msh = [x.real for x in self.Sigma_imp[0].mesh]
|
|
n_om = len(Msh)
|
|
|
|
DOS = {}
|
|
for bn in self.spin_block_names[self.SO]:
|
|
DOS[bn] = numpy.zeros([n_om],numpy.float_)
|
|
|
|
DOSproj = [ {} for ish in range(self.n_shells) ]
|
|
DOSproj_orb = [ {} for ish in range(self.n_shells) ]
|
|
for ish in range(self.n_shells):
|
|
for bn in self.spin_block_names[self.SO]:
|
|
dl = self.shells[ish][3]
|
|
DOSproj[ish][bn] = numpy.zeros([n_om],numpy.float_)
|
|
DOSproj_orb[ish][bn] = numpy.zeros([n_om,dl,dl],numpy.float_)
|
|
|
|
ikarray=numpy.array(range(self.n_k))
|
|
|
|
for ik in mpi.slice_array(ikarray):
|
|
|
|
S = self.lattice_gf_realfreq(ik=ik,mu=mu,broadening=broadening)
|
|
S *= self.bz_weights[ik]
|
|
|
|
# non-projected DOS
|
|
for iom in range(n_om):
|
|
for bname,gf in S: DOS[bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
|
|
|
#projected DOS:
|
|
for ish in xrange(self.n_shells):
|
|
tmp = Gproj[ish].copy()
|
|
for ir in xrange(self.n_parproj[ish]):
|
|
for bname,gf in tmp: tmp[bname] << self.downfold_pc(ik,ir,ish,bname,S[bname],gf)
|
|
Gproj[ish] += tmp
|
|
|
|
# collect data from mpi:
|
|
for bname in DOS:
|
|
DOS[bname] = mpi.all_reduce(mpi.world,DOS[bname],lambda x,y : x+y)
|
|
for ish in xrange(self.n_shells):
|
|
Gproj[ish] << mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
|
|
mpi.barrier()
|
|
|
|
if (self.symm_op!=0): Gproj = self.symmpar.symmetrize(Gproj)
|
|
|
|
# rotation to local coord. system:
|
|
if (self.use_rotations):
|
|
for ish in xrange(self.n_shells):
|
|
for bname,gf in Gproj[ish]: Gproj[ish][bname] << self.rotloc_all(ish,gf,direction='toLocal')
|
|
|
|
for ish in range(self.n_shells):
|
|
for bname,gf in Gproj[ish]:
|
|
for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
|
DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag / (-3.1415926535)
|
|
|
|
|
|
if (mpi.is_master_node()):
|
|
# output to files
|
|
for bn in self.spin_block_names[self.SO]:
|
|
f=open('./DOScorr%s.dat'%bn, 'w')
|
|
for i in range(n_om): f.write("%s %s\n"%(Msh[i],DOS[bn][i]))
|
|
f.close()
|
|
|
|
# partial
|
|
for ish in range(self.n_shells):
|
|
f=open('DOScorr%s_proj%s.dat'%(bn,ish),'w')
|
|
for i in range(n_om): f.write("%s %s\n"%(Msh[i],DOSproj[ish][bn][i]))
|
|
f.close()
|
|
|
|
for i in range(self.shells[ish][3]):
|
|
for j in range(i,self.shells[ish][3]):
|
|
Fname = './DOScorr'+bn+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat'
|
|
f=open(Fname,'w')
|
|
for iom in range(n_om): f.write("%s %s\n"%(Msh[iom],DOSproj_orb[ish][bn][iom,i,j]))
|
|
f.close()
|
|
|
|
|
|
|
|
|
|
def spaghettis(self,broadening,shift=0.0,plot_range=None, ishell=None, invert_Akw=False, fermi_surface=False):
|
|
""" Calculates the correlated band structure with a real-frequency self energy.
|
|
ATTENTION: Many things from the original input file are are overwritten!!!"""
|
|
|
|
assert hasattr(self,"Sigma_imp"), "Set Sigma First!!"
|
|
things_to_read = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_pc']
|
|
value_read = self.read_input_from_hdf(subgrp=self.bands_data,things_to_read=things_to_read)
|
|
if not value_read: return value_read
|
|
|
|
if fermi_surface: ishell=None
|
|
|
|
# FIXME CAN REMOVE?
|
|
# print hamiltonian for checks:
|
|
if ((self.SP==1)and(self.SO==0)):
|
|
f1=open('hamup.dat','w')
|
|
f2=open('hamdn.dat','w')
|
|
|
|
for ik in xrange(self.n_k):
|
|
for i in xrange(self.n_orbitals[ik,0]):
|
|
f1.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real))
|
|
for i in xrange(self.n_orbitals[ik,1]):
|
|
f2.write('%s %s\n'%(ik,self.hopping[ik,1,i,i].real))
|
|
f1.write('\n')
|
|
f2.write('\n')
|
|
f1.close()
|
|
f2.close()
|
|
else:
|
|
f=open('ham.dat','w')
|
|
for ik in xrange(self.n_k):
|
|
for i in xrange(self.n_orbitals[ik,0]):
|
|
f.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real))
|
|
f.write('\n')
|
|
f.close()
|
|
|
|
|
|
#=========================================
|
|
# calculate A(k,w):
|
|
|
|
mu = self.chemical_potential
|
|
bln = self.spin_block_names[self.SO]
|
|
|
|
# init DOS:
|
|
M = [x.real for x in self.Sigma_imp[0].mesh]
|
|
n_om = len(M)
|
|
|
|
if plot_range is None:
|
|
om_minplot = M[0]-0.001
|
|
om_maxplot = M[n_om-1] + 0.001
|
|
else:
|
|
om_minplot = plot_range[0]
|
|
om_maxplot = plot_range[1]
|
|
|
|
if (ishell is None):
|
|
Akw = {}
|
|
for b in bln: Akw[b] = numpy.zeros([self.n_k, n_om ],numpy.float_)
|
|
else:
|
|
Akw = {}
|
|
for b in bln: Akw[b] = numpy.zeros([self.shells[ishell][3],self.n_k, n_om ],numpy.float_)
|
|
|
|
if fermi_surface:
|
|
om_minplot = -2.0*broadening
|
|
om_maxplot = 2.0*broadening
|
|
Akw = {}
|
|
for b in bln: Akw[b] = numpy.zeros([self.n_k,1],numpy.float_)
|
|
|
|
if not (ishell is None):
|
|
GFStruct_proj = [ (b, range(self.shells[ishell][3])) for b in bln ]
|
|
Gproj = BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp[0].mesh)) for block,inner in GFStruct_proj ], make_copies = False)
|
|
Gproj.zero()
|
|
|
|
for ik in xrange(self.n_k):
|
|
|
|
S = self.lattice_gf_realfreq(ik=ik,mu=mu,broadening=broadening)
|
|
if (ishell is None):
|
|
# non-projected A(k,w)
|
|
for iom in range(n_om):
|
|
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
|
|
if fermi_surface:
|
|
for bname,gf in S: Akw[bname][ik,0] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) * (M[1]-M[0])
|
|
else:
|
|
for bname,gf in S: Akw[bname][ik,iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
|
|
Akw[bname][ik,iom] += ik*shift # shift Akw for plotting in xmgrace -- REMOVE
|
|
|
|
|
|
else:
|
|
# projected A(k,w):
|
|
Gproj.zero()
|
|
tmp = Gproj.copy()
|
|
for ir in xrange(self.n_parproj[ishell]):
|
|
for bname,gf in tmp: tmp[bname] << self.downfold_pc(ik,ir,ishell,bname,S[bname],gf)
|
|
Gproj += tmp
|
|
|
|
# FIXME NEED TO READ IN ROTMAT_ALL FROM PARPROJ SUBGROUP, REPLACE ROTLOC WITH ROTLOC_ALL
|
|
# TO BE FIXED:
|
|
# rotate to local frame
|
|
#if (self.use_rotations):
|
|
# for bname,gf in Gproj: Gproj[bname] << self.rotloc(0,gf,direction='toLocal')
|
|
|
|
for iom in range(n_om):
|
|
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
|
|
for ish in range(self.shells[ishell][3]):
|
|
for ibn in bln:
|
|
Akw[ibn][ish,ik,iom] = Gproj[ibn].data[iom,ish,ish].imag/(-3.1415926535)
|
|
|
|
|
|
# END k-LOOP
|
|
if (mpi.is_master_node()):
|
|
if (ishell is None):
|
|
|
|
for ibn in bln:
|
|
# loop over GF blocs:
|
|
|
|
if (invert_Akw):
|
|
maxAkw=Akw[ibn].max()
|
|
minAkw=Akw[ibn].min()
|
|
|
|
|
|
# open file for storage:
|
|
if fermi_surface:
|
|
f=open('FS_'+ibn+'.dat','w')
|
|
else:
|
|
f=open('Akw_'+ibn+'.dat','w')
|
|
|
|
for ik in range(self.n_k):
|
|
if fermi_surface:
|
|
if (invert_Akw):
|
|
Akw[ibn][ik,0] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,0] - maxAkw)
|
|
f.write('%s %s\n'%(ik,Akw[ibn][ik,0]))
|
|
else:
|
|
for iom in range(n_om):
|
|
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
|
|
if (invert_Akw):
|
|
Akw[ibn][ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,iom] - maxAkw)
|
|
if (shift>0.0001):
|
|
f.write('%s %s\n'%(M[iom],Akw[ibn][ik,iom]))
|
|
else:
|
|
f.write('%s %s %s\n'%(ik,M[iom],Akw[ibn][ik,iom]))
|
|
|
|
f.write('\n')
|
|
|
|
f.close()
|
|
|
|
else:
|
|
for ibn in bln:
|
|
for ish in range(self.shells[ishell][3]):
|
|
|
|
if (invert_Akw):
|
|
maxAkw=Akw[ibn][ish,:,:].max()
|
|
minAkw=Akw[ibn][ish,:,:].min()
|
|
|
|
f=open('Akw_'+ibn+'_proj'+str(ish)+'.dat','w')
|
|
|
|
for ik in range(self.n_k):
|
|
for iom in range(n_om):
|
|
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
|
|
if (invert_Akw):
|
|
Akw[ibn][ish,ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ish,ik,iom] - maxAkw)
|
|
if (shift>0.0001):
|
|
f.write('%s %s\n'%(M[iom],Akw[ibn][ish,ik,iom]))
|
|
else:
|
|
f.write('%s %s %s\n'%(ik,M[iom],Akw[ibn][ish,ik,iom]))
|
|
|
|
f.write('\n')
|
|
|
|
f.close()
|
|
|
|
|
|
def partial_charges(self,beta=40):
|
|
"""Calculates the orbitally-resolved density matrix for all the orbitals considered in the input.
|
|
The theta-projectors are used, hence case.parproj data is necessary"""
|
|
|
|
value_read = self.read_parproj_input_from_hdf()
|
|
if not value_read: return value_read
|
|
if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
|
|
|
|
# Density matrix in the window
|
|
bln = self.spin_block_names[self.SO]
|
|
ntoi = self.spin_names_to_ind[self.SO]
|
|
self.dens_mat_window = [ [numpy.zeros([self.shells[ish][3],self.shells[ish][3]],numpy.complex_) for ish in range(self.n_shells)]
|
|
for isp in range(len(bln)) ] # init the density matrix
|
|
|
|
mu = self.chemical_potential
|
|
GFStruct_proj = [ [ (b, range(self.shells[i][3])) for b in bln ] for i in xrange(self.n_shells) ]
|
|
if hasattr(self,"Sigma_imp"):
|
|
Gproj = [BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, mesh = self.Sigma_imp[0].mesh)) for block,inner in GFStruct_proj[ish] ], make_copies = False)
|
|
for ish in xrange(self.n_shells)]
|
|
beta = self.Sigma_imp[0].mesh.beta
|
|
else:
|
|
Gproj = [BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, beta = beta)) for block,inner in GFStruct_proj[ish] ], make_copies = False)
|
|
for ish in xrange(self.n_shells)]
|
|
|
|
for ish in xrange(self.n_shells): Gproj[ish].zero()
|
|
|
|
ikarray=numpy.array(range(self.n_k))
|
|
|
|
for ik in mpi.slice_array(ikarray):
|
|
S = self.lattice_gf_matsubara(ik=ik,mu=mu,beta=beta)
|
|
S *= self.bz_weights[ik]
|
|
|
|
for ish in xrange(self.n_shells):
|
|
tmp = Gproj[ish].copy()
|
|
for ir in xrange(self.n_parproj[ish]):
|
|
for bname,gf in tmp: tmp[bname] << self.downfold_pc(ik,ir,ish,bname,S[bname],gf)
|
|
Gproj[ish] += tmp
|
|
|
|
#collect data from mpi:
|
|
for ish in xrange(self.n_shells):
|
|
Gproj[ish] << mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
|
|
mpi.barrier()
|
|
|
|
|
|
# Symmetrisation:
|
|
if (self.symm_op!=0): Gproj = self.symmpar.symmetrize(Gproj)
|
|
|
|
for ish in xrange(self.n_shells):
|
|
|
|
# Rotation to local:
|
|
if (self.use_rotations):
|
|
for bname,gf in Gproj[ish]: Gproj[ish][bname] << self.rotloc_all(ish,gf,direction='toLocal')
|
|
|
|
isp = 0
|
|
for bname,gf in Gproj[ish]: #dmg.append(Gproj[ish].density()[bname])
|
|
self.dens_mat_window[isp][ish] = Gproj[ish].density()[bname]
|
|
isp+=1
|
|
|
|
# add Density matrices to get the total:
|
|
dens_mat = [ [ self.dens_mat_below[ntoi[bln[isp]]][ish]+self.dens_mat_window[isp][ish] for ish in range(self.n_shells)]
|
|
for isp in range(len(bln)) ]
|
|
|
|
return dens_mat
|