3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-05 10:59:34 +01:00
dft_tools/doc/tutorials/images_scripts/Ce-gamma.py
Alexander Hampel a1209f8a53 renamed converters from app_converter.py to app.py
* adapted all occurences of the converter script file names including
  the doc files
* fixed one failing test: Py_basis_transformation.py
2020-06-23 11:13:00 +02:00

145 lines
5.4 KiB
Python

from triqs_dft_tools.sumk_dft import *
from triqs_dft_tools.converters.wien2k import *
from triqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
import os
dft_filename = os.getcwd().rpartition('/')[2]
beta = 40
U_int = 6.00
J_hund = 0.70
Loops = 5 # Number of DMFT sc-loops
mixing = 0.7 # Mixing factor
DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein
chemical_potential_init=0.0 # initial chemical potential
# Convert DMFT input:
Converter = Wien2kConverter(filename=dft_filename)
Converter.convert_dft_input()
mpi.barrier()
#check if there are previous runs:
previous_runs = 0
previous_present = False
if mpi.is_master_node():
with HDFArchive(dft_filename+'.h5','a') as f:
if 'dmft_output' in f:
ar = f['dmft_output']
if 'iterations' in ar:
previous_present = True
previous_runs = ar['iterations']
else:
f.create_group('dmft_output')
previous_runs = mpi.bcast(previous_runs)
previous_present = mpi.bcast(previous_present)
# Init the SumK class
SK=SumkDFT(hdf_file=dft_filename+'.h5',use_dft_blocks=False)
Norb = SK.corr_shells[0]['dim']
l = SK.corr_shells[0]['l']
# Init the Hubbard-I solver:
S = Solver(beta = beta, l = l)
chemical_potential=chemical_potential_init
# load previous data: old self-energy, chemical potential, DC correction
if previous_present:
if mpi.is_master_node():
with HDFArchive(dft_filename+'.h5','r') as ar:
S.Sigma << ar['dmft_output']['Sigma']
SK.chemical_potential,SK.dc_imp,SK.dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ'])
S.Sigma << mpi.bcast(S.Sigma)
SK.chemical_potential = mpi.bcast(SK.chemical_potential)
SK.dc_imp = mpi.bcast(SK.dc_imp)
SK.dc_energ = mpi.bcast(SK.dc_energ)
# DMFT loop:
for iteration_number in range(1,Loops+1):
itn = iteration_number + previous_runs
# put Sigma into the SumK class:
SK.set_Sigma([ S.Sigma ])
# Compute the SumK, possibly fixing mu by dichotomy
chemical_potential = SK.calc_mu( precision = 0.000001 )
# Density:
S.G <<= SK.extract_G_loc()[0]
mpi.report("Total charge of Gloc : %.6f"%S.G.total_density())
# calculated DC at the first run to have reasonable initial non-interacting atomic level positions
if ((iteration_number==1)and(previous_present==False)):
dc_value_init=U_int/2.0
dm=S.G.density()
SK.calc_dc( dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type, use_dc_value=dc_value_init)
# calculate non-interacting atomic level positions:
eal = SK.eff_atomic_levels()[0]
S.set_atomic_levels( eal = eal )
# solve it:
S.solve(U_int = U_int, J_hund = J_hund, verbosity = 1)
# Now mix Sigma and G with factor Mix, if wanted:
if (iteration_number>1 or previous_present):
if (mpi.is_master_node() and (mixing<1.0)):
with HDFArchive(dft_filename+'.h5','r') as ar:
mpi.report("Mixing Sigma and G with factor %s"%mixing)
S.Sigma << mixing * S.Sigma + (1.0-mixing) * ar['dmft_output']['Sigma']
S.G << mixing * S.G + (1.0-mixing) * ar['dmft_output']['G']
S.G << mpi.bcast(S.G)
S.Sigma << mpi.bcast(S.Sigma)
# after the Solver has finished, set new double counting:
dm = S.G.density()
SK.calc_dc( dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type )
# correlation energy calculations:
SK.correnerg = 0.5 * (S.G * S.Sigma).total_density()
mpi.report("Corr. energy = %s"%SK.correnerg)
# store the impurity self-energy, GF as well as correlation energy in h5
if mpi.is_master_node():
with HDFArchive(dft_filename+'.h5','a') as ar:
ar['dmft_output']['iterations'] = iteration_number + previous_runs
ar['dmft_output']['G'] = S.G
ar['dmft_output']['Sigma'] = S.Sigma
#Save essential SumkDFT data:
SK.save(['chemical_potential','dc_imp','dc_energ','correnerg'])
if (mpi.is_master_node()):
print('DC after solver: ',SK.dc_imp[0])
# print out occupancy matrix of Ce 4f
mpi.report("Orbital densities of impurity Green function:")
for s in dm:
mpi.report("Block %s: "%s)
for ii in range(len(dm[s])):
str = ''
for jj in range(len(dm[s])):
if (dm[s][ii,jj].real>0):
str += " %.4f"%(dm[s][ii,jj].real)
else:
str += " %.4f"%(dm[s][ii,jj].real)
mpi.report(str)
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())
# find exact chemical potential
SK.chemical_potential = SK.calc_mu( precision = 0.000001 )
# calculate and save occupancy matrix in the Bloch basis for Wien2k charge denity recalculation
dN,d = SK.calc_density_correction(filename = dft_filename+'.qdmft')
mpi.report("Trace of Density Matrix: %s"%d)
# store correlation energy contribution to be read by Wien2ki and then included to DFT+DMFT total energy
if (mpi.is_master_node()):
SK.correnerg -= SK.dc_energ[0]
f=open(dft_filename+'.qdmft','a')
f.write("%.16f\n"%SK.correnerg)
f.close()