3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-26 14:23:38 +01:00
dft_tools/triqs/arrays/h5/simple_read_write.cpp
Olivier Parcollet 25eec4e046 Silence some gcc warnings...
- Silence some trivial warning.
- TODO: narrowing in a few places.
2014-06-12 17:45:12 +02:00

151 lines
6.8 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011-2014 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include "./simple_read_write.hpp"
using dcomplex = std::complex<double>;
namespace triqs {
namespace arrays {
namespace h5_impl {
// the dataspace corresponding to the array. Contiguous data only...
H5::DataSpace data_space_impl(array_stride_info info, bool is_complex) {
hsize_t L[info.R], S[info.R];
for (int u = 0; u < info.R; ++u) {
if (info.strides[u] <= 0) TRIQS_RUNTIME_ERROR << " negative strides not permitted in h5";
S[u] = 1;
L[u] = info.lengths[u];
}
return h5::dataspace_from_LS(info.R, is_complex, L, L, S);
}
/// --------------------------- WRITE ---------------------------------------------
template <typename T> void write_array_impl(h5::group g, std::string const& name, const T* start, array_stride_info info) {
static_assert(!std::is_base_of<std::string, T>::value, " Not implemented"); // 1d is below
bool is_complex = triqs::is_complex<T>::value;
try {
H5::DataSet ds = g.create_dataset(name, h5::data_type_file<T>(), data_space_impl(info, is_complex));
ds.write(h5::get_data_ptr(start), h5::data_type_memory<T>(), data_space_impl(info, is_complex));
// if complex, to be python compatible, we add the __complex__ attribute
if (is_complex) h5::write_string_attribute(&ds, "__complex__", "1");
}
TRIQS_ARRAYS_H5_CATCH_EXCEPTION;
}
template void write_array_impl<int>(h5::group g, std::string const& name, const int* start, array_stride_info info);
template void write_array_impl<long>(h5::group g, std::string const& name, const long* start, array_stride_info info);
template void write_array_impl<double>(h5::group g, std::string const& name, const double* start, array_stride_info info);
template void write_array_impl<dcomplex>(h5::group g, std::string const& name, const dcomplex* start, array_stride_info info);
// overload : special treatment for arrays of strings (one dimension only).
void write_array(h5::group g, std::string const& name, vector_const_view<std::string> V) {
std::vector<std::string> tmp(V.size());
std::copy(begin(V), end(V), begin(tmp));
h5_write(g, name, tmp);
}
void write_array(h5::group g, std::string const& name, array_const_view<std::string, 1> V) {
std::vector<std::string> tmp(first_dim(V));
std::copy(begin(V), end(V), begin(tmp));
h5_write(g, name, tmp);
}
/// --------------------------- READ ---------------------------------------------
/* template <typename ArrayType1> void read_array(h5::group g, std::string const& name, ArrayType1&& A, bool C_reorder = true) {
typedef typename std::remove_reference<ArrayType1>::type ArrayType;
static_assert(!std::is_base_of<std::string, typename ArrayType::value_type>::value, " Not implemented"); // 1d is below
try {
H5::DataSet ds = g.open_dataset(name);
H5::DataSpace dataspace = ds.getSpace();
static const unsigned int Rank = ArrayType::rank + (triqs::is_complex<typename ArrayType::value_type>::value ? 1 : 0);
int rank = dataspace.getSimpleExtentNdims();
if (rank != Rank)
TRIQS_RUNTIME_ERROR << "triqs::array::h5::read. Rank mismatch : the array has rank = " << Rank
<< " while the array stored in the hdf5 file has rank = " << rank;
mini_vector<hsize_t, Rank> dims_out;
dataspace.getSimpleExtentDims(&dims_out[0], NULL);
mini_vector<size_t, ArrayType::rank> d2;
for (size_t u = 0; u < ArrayType::rank; ++u) d2[u] = dims_out[u];
resize_or_check(A, d2);
if (C_reorder) {
read_array(g, name, make_cache(A).view(), false);
//read_array(g, name, cache<ArrayType, typename ArrayType::regular_type>(A).view(), false);
} else
ds.read(__get_array_data_ptr(A), h5::data_type_memory<typename ArrayType::value_type>(), data_space(A), dataspace);
}
TRIQS_ARRAYS_H5_CATCH_EXCEPTION;
}
*/
std::vector<size_t> get_array_lengths(int R, h5::group g, std::string const& name, bool is_complex) {
try {
H5::DataSet ds = g.open_dataset(name);
H5::DataSpace dataspace = ds.getSpace();
int Rank = R + (is_complex ? 1 : 0);
int rank = dataspace.getSimpleExtentNdims();
if (rank != Rank)
TRIQS_RUNTIME_ERROR << "triqs::array::h5::read. Rank mismatch : the array has rank = " << Rank
<< " while the array stored in the hdf5 file has rank = " << rank;
std::vector<size_t> d2(R);
hsize_t dims_out[rank];
dataspace.getSimpleExtentDims(&dims_out[0], NULL);
for (int u = 0; u < R; ++u) d2[u] = dims_out[u];
return d2;
}
TRIQS_ARRAYS_H5_CATCH_EXCEPTION;
}
template <typename T> void read_array_impl(h5::group g, std::string const& name, T* start, array_stride_info info) {
static_assert(!std::is_base_of<std::string, T>::value, " Not implemented"); // 1d is below
bool is_complex = triqs::is_complex<T>::value;
try {
H5::DataSet ds = g.open_dataset(name);
H5::DataSpace dataspace = ds.getSpace();
ds.read(h5::get_data_ptr(start), h5::data_type_memory<T>(), data_space_impl(info, is_complex), dataspace);
}
TRIQS_ARRAYS_H5_CATCH_EXCEPTION;
}
template void read_array_impl<int>(h5::group g, std::string const& name, int* start, array_stride_info info);
template void read_array_impl<long>(h5::group g, std::string const& name, long* start, array_stride_info info);
template void read_array_impl<double>(h5::group g, std::string const& name, double* start, array_stride_info info);
template void read_array_impl<dcomplex>(h5::group g, std::string const& name, dcomplex* start, array_stride_info info);
void read_array(h5::group g, std::string const& name, arrays::vector<std::string>& V) {
std::vector<std::string> tmp;
h5_read(g, name, tmp);
V.resize(tmp.size());
std::copy(begin(tmp), end(tmp), begin(V));
}
// I can not use the generic code, just because the resize of the array take a shape, not a size_t as std::vector and vector
void read_array(h5::group f, std::string const& name, arrays::array<std::string, 1>& V) {
arrays::vector<std::string> res;
read_array(f, name, res);
V = res;
}
}
}
}