mirror of
https://github.com/triqs/dft_tools
synced 2025-01-07 03:43:12 +01:00
208 lines
12 KiB
ReStructuredText
208 lines
12 KiB
ReStructuredText
.. _Transport:
|
|
|
|
Transport calculations
|
|
============================
|
|
|
|
Formalism
|
|
---------
|
|
The conductivity, the Seebeck coefficient and the electronic contribution to the thermal conductivity in direction :math:`\alpha\beta` are defined as [#transp1]_ [#transp2]_:
|
|
|
|
.. math::
|
|
|
|
\sigma_{\alpha\beta} = \beta e^{2} A_{0,\alpha\beta}
|
|
|
|
.. math::
|
|
|
|
S_{\alpha\beta} = -\frac{k_B}{|e|}\frac{A_{1,\alpha\beta}}{A_{0,\alpha\beta}},
|
|
|
|
.. math::
|
|
|
|
\kappa^{\text{el}}_{\alpha\beta} = k_B \left(A_{2,\alpha\beta} - \frac{A_{1,\alpha\beta}^2}{A_{0,\alpha\beta}}\right),
|
|
|
|
in which the kinetic coefficients :math:`A_{n,\alpha\beta}` are given by
|
|
|
|
.. math::
|
|
|
|
A_{n,\alpha\beta} = N_{sp} \pi \hbar \int{d\omega \left(\beta\omega\right)^n f\left(\omega\right)f\left(-\omega\right)\Gamma_{\alpha\beta}\left(\omega,\omega\right)}.
|
|
|
|
Here :math:`N_{sp}` is the spin factor and :math:`f(\omega)` is the Fermi function. The transport distribution :math:`\Gamma_{\alpha\beta}\left(\omega_1,\omega_2\right)` is defined as
|
|
|
|
.. math::
|
|
|
|
\Gamma_{\alpha\beta}\left(\omega_1,\omega_2\right) = \frac{1}{V} \sum_k Tr\left(v_{k,\alpha}A_{k}(\omega_1)v_{k,\beta}A_{k}\left(\omega_2\right)\right),
|
|
|
|
where :math:`V` is the unit cell volume. In multi-band systems the velocities :math:`v_{k}` and the spectral function :math:`A(k,\omega)` are matrices in the band indices :math:`i` and :math:`j`.
|
|
The frequency depended optical conductivity is given by
|
|
|
|
.. math::
|
|
|
|
\sigma(\Omega) = N_{sp} \pi e^2 \hbar \int{d\omega \Gamma_{\alpha\beta}(\omega+\Omega/2,\omega-\Omega/2)\frac{f(\omega-\Omega/2)-f(\omega+\Omega/2)}{\Omega}}.
|
|
|
|
|
|
Prerequisites
|
|
-------------
|
|
First perform a standard :ref:`DFT+DMFT calculation <full_charge_selfcons>` for your desired material and obtain the
|
|
real-frequency self energy.
|
|
|
|
.. note::
|
|
If you use a CT-QMC impurity solver you need to perform an **analytic continuation** of
|
|
self energies and Green functions from Matsubara frequencies to the real-frequency axis!
|
|
This packages does NOT provide methods to do this, but a list of options available within the TRIQS framework
|
|
is given :ref:`here <ac>`. Keep in mind that all these methods have to be used very carefully. Especially for optics calculations
|
|
it is crucial to perform the analytic continuation in such a way that the real-frequency self energy
|
|
is accurate around the Fermi energy as low-energy features strongly influence the final results.
|
|
|
|
Below will describe the prerequisites from the different DFT codes.
|
|
|
|
Prequisites from Wien2k
|
|
^^^^^^^^^^^^^^^^^^^^^^^
|
|
Besides the self energy the Wien2k files read by the transport converter (:meth:`convert_transport_input <dft.converters.wien2k.Wien2kConverter.convert_transport_input>`) are:
|
|
* :file:`.struct`: The lattice constants specified in the struct file are used to calculate the unit cell volume.
|
|
* :file:`.outputs`: In this file the k-point symmetries are given.
|
|
* :file:`.oubwin`: Contains the indices of the bands within the projected subspace (written by :program:`dmftproj`) for each k-point.
|
|
* :file:`.pmat`: This file is the output of the Wien2k optics package and contains the velocity (momentum) matrix elements between all bands in the desired energy
|
|
window for each k-point. How to use the optics package is described below.
|
|
* :file:`.h5`: The hdf5 archive has to be present and should contain the dft_input subgroup. Otherwise :meth:`convert_dft_input <dft.converters.wien2k.Wien2kConverter.convert_dft_input>` needs to be called before :meth:`convert_transport_input <dft.converters.wien2k.Wien2kConverter.convert_transport_input>`.
|
|
|
|
|
|
These Wien2k files are read and the relevant information is stored in the hdf5 archive by using the following::
|
|
|
|
from triqs_dft_tools.converters.wien2k import *
|
|
from triqs_dft_tools.sumk_dft_tools import *
|
|
|
|
Converter = Wien2kConverter(filename='case', repacking=True)
|
|
Converter.convert_transport_input()
|
|
|
|
SK = SumkDFTTools(hdf_file='case.h5', use_dft_blocks=True)
|
|
|
|
The converter :meth:`convert_transport_input <dft.converters.wien2k.Wien2kConverter.convert_transport_input>`
|
|
reads the required data of the Wien2k output and stores it in the `dft_transp_input` subgroup of your hdf file.
|
|
|
|
|
|
Wien2k optics package
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
The basics steps to calculate the matrix elements of the momentum operator with the Wien2k optics package are:
|
|
1) Perform a standard Wien2k calculation for your material.
|
|
2) Run `x kgen` to generate a dense k-mesh.
|
|
3) Run `x lapw1`.
|
|
4) For metals change TETRA to 101.0 in :file:`case.in2`.
|
|
5) Run `x lapw2 -fermi`.
|
|
6) Run `x optic`.
|
|
|
|
Additionally the input file :file:`case.inop` is required. A detail description on how to setup this file can be found in the Wien2k user guide [#userguide]_ on page 166.
|
|
The optics energy window should be chosen according to the window used for :program:`dmftproj`. Note that the current version of the transport code uses only the smaller
|
|
of those two windows. However, keep in mind that the optics energy window has to be specified in absolute values and NOT relative to the Fermi energy!
|
|
You can read off the Fermi energy from the :file:`case.scf2` file. Please do not set the optional parameter NBvalMAX in :file:`case.inop`.
|
|
Furthermore it is necessary to set line 6 to "ON" and put a "1" in the following line to enable the printing of the matrix elements to :file:`case.pmat`.
|
|
|
|
|
|
|
|
|
|
Prequisites from Elk
|
|
^^^^^^^^^^^^^^^^^^^^
|
|
|
|
The Elk transport converter (:meth:`convert_transport_input <dft.converters.elk.ElkConverter.convert_transport_input>`) reads in the following files:
|
|
* `LATTICE.OUT`: Real and reciprocal lattice structure and cell volumes.
|
|
* `SYMCRYS.OUT`: Crystal symmetries.
|
|
* `PMAT.OUT`: Fortran binary containing the velocity matrix elements.
|
|
* :file:`.h5`: The hdf5 archive has to be present and should contain the dft_input subgroup. Otherwise :meth:`convert_dft_input <dft.converters.elk.ElkConverter.convert_dft_input>` needs to be called before :meth:`convert_transport_input <dft.converters.elk.ElkConverter.convert_transport_input>`. It is recommended to call :meth:`convert_dft_input <dft.converters.elk.ElkConverter.convert_dft_input>` before :meth:`convert_transport_input <dft.converters.elk.ElkConverter.convert_transport_input>`.
|
|
|
|
|
|
Except for `PMAT.OUT`, the other files are standard outputs from Elk's groundstate calculation and are used in :meth:`convert_dft_input <dft.converters.elk.ElkConverter.convert_dft_input>`. The `PMAT.OUT` file on the otherhand is generated by Elk by running **task 120**, see [#userguide2]_. Note that unlike in the Wien2k transport converter, the Elk transport converter uses the correlated band window stored in the `dft_misc_input` (which originates from running :meth:`convert_dft_input <dft.converters.elk.ElkConverter.convert_dft_input>`).
|
|
|
|
These Elk files are then read and the relevant information is stored in the hdf5 archive by using the following::
|
|
|
|
from triqs_dft_tools.converters.elk import *
|
|
from triqs_dft_tools.sumk_dft_tools import *
|
|
|
|
Converter = ElkConverter(filename='case', repacking=True)
|
|
Converter.convert_transport_input()
|
|
|
|
SK = SumkDFTTools(hdf_file='case.h5', use_dft_blocks=True)
|
|
|
|
The converter :meth:`convert_transport_input <dft.converters.wien2k.Wien2kConverter.convert_transport_input>`
|
|
reads the required data of the Elk output and stores it in the `dft_transp_input` subgroup of your hdf file.
|
|
|
|
|
|
|
|
Using the transport code
|
|
------------------------
|
|
|
|
Once we have converted the transport data from the DFT codes (see above), we also need to read and set the self energy, the chemical potential and the double counting::
|
|
|
|
with HDFArchive('case.h5', 'r') as ar:
|
|
SK.set_Sigma([ar['dmft_output']['Sigma_w']])
|
|
chemical_potential,dc_imp,dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ'])
|
|
SK.set_mu(chemical_potential)
|
|
SK.set_dc(dc_imp,dc_energ)
|
|
|
|
As next step we can calculate the transport distribution :math:`\Gamma_{\alpha\beta}(\omega)`::
|
|
|
|
SK.transport_distribution(directions=['xx'], Om_mesh=[0.0, 0.1], energy_window=[-0.3,0.3],
|
|
with_Sigma=True, broadening=0.0, beta=40)
|
|
|
|
Here the transport distribution is calculated in :math:`xx` direction for the frequencies :math:`\Omega=0.0` and :math:`0.1`.
|
|
To use the previously obtained self energy we set `with_Sigma` to **True** and the broadening to :math:`0.0`.
|
|
As we also want to calculate the Seebeck coefficient and the thermal conductivity we have to include :math:`\Omega=0.0` in the mesh.
|
|
Note that the current version of the code repines the :math:`\Omega` values to the closest values on the self energy mesh.
|
|
For complete description of the input parameters see the :meth:`transport_distribution reference <dft.sumk_dft_tools.SumkDFTTools.transport_distribution>`.
|
|
|
|
The resulting transport distribution is not automatically saved, but this can be easily achieved with::
|
|
|
|
SK.save(['Gamma_w','Om_mesh','omega','directions'])
|
|
|
|
You can retrieve it from the archive by::
|
|
|
|
SK.Gamma_w, SK.Om_mesh, SK.omega, SK.directions = SK.load(['Gamma_w','Om_mesh','omega','directions'])
|
|
|
|
Finally the optical conductivity :math:`\sigma(\Omega)`, the Seebeck coefficient :math:`S` and the thermal conductivity :math:`\kappa^{\text{el}}` can be obtained with::
|
|
|
|
SK.conductivity_and_seebeck(beta=40)
|
|
SK.save(['seebeck','optic_cond','kappa'])
|
|
|
|
It is strongly advised to check convergence in the number of k-points!
|
|
|
|
|
|
Example
|
|
-------
|
|
|
|
Here we present an example calculation of the DFT optical conductivity of SrVO3 comparing the results from the Elk and Wien2k inputs. The DFT codes used 4495 k-points in the
|
|
irreducible Brillouin zone with Wannier projectors generated within a correlated energy window of [-8, 7.5] eV. We assume that the required DFT files have been read and saved by the TRIQS
|
|
interface routines as discussed previously. Below is an example script to generate the conductivities::
|
|
|
|
from sumk_dft_tools import *
|
|
import numpy
|
|
|
|
SK = SumkDFTTools(hdf_file=filename+'.h5', use_dft_blocks=True)
|
|
|
|
#Generate numpy mesh for omega values
|
|
om_mesh = list(numpy.linspace(0.0,5.0,51))
|
|
|
|
#Generate and save the transport distribution
|
|
SK.transport_distribution(directions=['xx'], Om_mesh=om_mesh, energy_window=[-8.0, 7.5], with_Sigma=False, broadening=-0.05, beta=40, n_om=1000)
|
|
SK.save(['Gamma_w','Om_mesh','omega','directions'])
|
|
|
|
#Generate and save conductivities
|
|
SK.conductivity_and_seebeck(beta=40)
|
|
SK.save(['seebeck','optic_cond','kappa'])
|
|
|
|
The optic_cond variable can be loaded by using :meth:`SK.load` and then plotted to generate the following figure.
|
|
|
|
.. image:: transport_plots/opt_comp.png
|
|
:width: 700
|
|
:align: center
|
|
|
|
Note that the differences between the conductivities arise from the differences in the velocities generated in the DFT codes. The DMFT optical conductivity can easily be calculated by adjusting
|
|
the above example script by setting `with_Sigma` to **True**. In this case however, the SK object will need the DMFT self-energy on the real frequency axis.
|
|
|
|
|
|
References
|
|
----------
|
|
|
|
.. [#transp1] `V. S. Oudovenko, G. Palsson, K. Haule, G. Kotliar, S. Y. Savrasov, Phys. Rev. B 73, 035120 (2006) <http://link.aps.org/doi/10.1103/PhysRevB.73.0351>`_
|
|
.. [#transp2] `J. M. Tomczak, K. Haule, T. Miyake, A. Georges, G. Kotliar, Phys. Rev. B 82, 085104 (2010) <https://link.aps.org/doi/10.1103/PhysRevB.82.085104>`_
|
|
.. [#userguide] `P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, ISBN 3-9501031-1-2 <http://www.wien2k.at/reg_user/textbooks/usersguide.pdf>`_
|
|
.. [#userguide2] `J. K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, O. Granas, and E. K. U. Gross, The Elk Code Manual <https://elk.sourceforge.io/elk.pdf>`_
|
|
|