mirror of
https://github.com/triqs/dft_tools
synced 2025-01-01 00:55:48 +01:00
243 lines
9.0 KiB
ReStructuredText
243 lines
9.0 KiB
ReStructuredText
Concepts
|
|
=============================================================
|
|
|
|
In this section, we define the basic concepts (in the C++ sense)
|
|
related to the multidimentional arrays.
|
|
Readers not familiar with the idea of concepts in programming can skip this section,
|
|
which is however needed for a more advanced usage of the library.
|
|
|
|
|
|
A multidimentional array is basically a function of some indices, typically integers taken in a specific domain,
|
|
returning the element type of the array, e.g. int, double.
|
|
Indeed, if a is an two dimensionnal array of int,
|
|
it is expected that a(i,j) returns an int or a reference to an int, for i,j integers in some domain.
|
|
|
|
We distinguish two separate notions, whether this function is `pure` or not,
|
|
i.e. whether one can or not modify a(i,j).
|
|
|
|
* An `Immutable` array is just a pure function on the domain of definition.
|
|
a(i,j) returns a int, or a int const &, that can not be modified (hence immutable).
|
|
|
|
* A `Mutable` array is an Immutable array, which can also be modified. Non const object return a reference,
|
|
e.g. a(i,j) can return a int &. Typically this is a piece of memory, with a integer coordinate system on it.
|
|
|
|
The main point here is that `Immutable` array is a much more general notion :
|
|
a formal expression made of array (E.g. A + 2*B) models this concept, but not the `Mutable` one.
|
|
Most algorithms only use the `Immutable` notion, when then are pure (mathematical) function
|
|
that returns something depending on the value of an object, without side effects.
|
|
|
|
|
|
.. _ImmutableCuboidArray:
|
|
|
|
ImmutableCuboidArray
|
|
----------------------------
|
|
|
|
* **Purpose** :
|
|
|
|
The most abstract definition of something that behaves like an immutable array on a cuboid domain.
|
|
|
|
* it has a cuboid domain (hence a rank).
|
|
* it can be evaluated on any value of the indices in the domain
|
|
|
|
* NB : It does not need to be stored in memory. A formal expression, e.g. model this concept.
|
|
|
|
* **Definition** ([...] denotes something optional).
|
|
|
|
+-------------------------------------------------------+-------------------------------------------------------------------------+
|
|
| Members | Comment |
|
|
+=======================================================+=========================================================================+
|
|
| domain_type == cuboid_domain<Rank> | Type of the domain, with rank `Rank` |
|
|
+-------------------------------------------------------+-------------------------------------------------------------------------+
|
|
| domain_type [const &] domain() const | Access to the domain. |
|
|
+-------------------------------------------------------+-------------------------------------------------------------------------+
|
|
| value_type | Type of the element of the array |
|
|
+-------------------------------------------------------+-------------------------------------------------------------------------+
|
|
| value_type [const &] operator() (size_t ... i) const | Evaluation. Must have exactly rank argument (checked at compiled time). |
|
|
+-------------------------------------------------------+-------------------------------------------------------------------------+
|
|
|
|
* **Examples** :
|
|
* array, array_view, matrix, matrix_view, vector, vector_view.
|
|
* array expressions.
|
|
|
|
.. _MutableCuboidArray:
|
|
|
|
MutableCuboidArray
|
|
-------------------------
|
|
|
|
* **Purpose** : An array where the data can be modified...
|
|
* **Refines** : :ref:`ImmutableCuboidArray`.
|
|
|
|
* **Definition**
|
|
|
|
+----------------------------------------------+-----------------------------------------------------------------------------+
|
|
| Members | Comment |
|
|
+==============================================+=============================================================================+
|
|
| value_type & operator() (size_t ... i) | Element access: Must have exactly rank argument (checked at compiled time). |
|
|
+----------------------------------------------+-----------------------------------------------------------------------------+
|
|
|
|
* **Examples** :
|
|
* array, array_view, matrix, matrix_view, vector, vector_view.
|
|
|
|
.. _ImmutableArray:
|
|
|
|
ImmutableArray
|
|
-------------------------------------------------------------------
|
|
|
|
* Refines :ref:`ImmutableCuboidArray`
|
|
|
|
* If X is the type :
|
|
|
|
* ImmutableArray<A> == true_type
|
|
|
|
NB : this traits marks the fact that X belongs to the Array algebra.
|
|
|
|
.. _ImmutableMatrix:
|
|
|
|
ImmutableMatrix
|
|
-------------------------------------------------------------------
|
|
|
|
* Refines :ref:`ImmutableCuboidArray`
|
|
|
|
* If A is the type :
|
|
|
|
* ImmutableMatrix<A> == true_type
|
|
* A::domain_type::rank ==2
|
|
|
|
NB : this traits marks the fact that X belongs to the MatrixVector algebra.
|
|
|
|
.. _ImmutableVector:
|
|
|
|
ImmutableVector
|
|
-------------------------------------------------------------------
|
|
|
|
* Refines :ref:`ImmutableCuboidArray`
|
|
|
|
* If A is the type :
|
|
|
|
* ImmutableMatrix<A> == true_type
|
|
* A::domain_type::rank ==1
|
|
|
|
NB : this traits marks the fact that X belongs to the MatrixVector algebra.
|
|
|
|
|
|
.. _MutableArray:
|
|
|
|
MutableArray
|
|
-------------------------------------------------------------------
|
|
|
|
* Refines :ref:`MutableCuboidArray`
|
|
|
|
* If A is the type :
|
|
|
|
* ImmutableArray<A> == true_type
|
|
* MutableArray<A> == true_type
|
|
|
|
NB : this traits marks the fact that X belongs to the Array algebra.
|
|
|
|
.. _MutableMatrix:
|
|
|
|
MutableMatrix
|
|
-------------------------------------------------------------------
|
|
|
|
* Refines :ref:`MutableCuboidArray`
|
|
|
|
* If A is the type :
|
|
|
|
* ImmutableMatrix<A> == true_type
|
|
* MutableMatrix<A> == true_type
|
|
* A::domain_type::rank ==2
|
|
|
|
NB : this traits marks the fact that X belongs to the MatrixVector algebra.
|
|
|
|
.. _MutableVector:
|
|
|
|
MutableVector
|
|
-------------------------------------------------------------------
|
|
|
|
* Refines :ref:`MutableCuboidArray`
|
|
|
|
* If A is the type :
|
|
|
|
* ImmutableMatrix<A> == true_type
|
|
* MutableMatrix<A> == true_type
|
|
* A::domain_type::rank ==1
|
|
|
|
NB : this traits marks the fact that X belongs to the MatrixVector algebra.
|
|
|
|
|
|
Why concepts ? [Advanced]
|
|
-----------------------------
|
|
|
|
Why is it useful to define those concepts ?
|
|
|
|
Simply because of lot of the library algorithms only use those concepts, and can be used
|
|
for an array, or any custom class that model the concept.
|
|
|
|
Example :
|
|
|
|
* Problem: we want to quickly assemble a small class to store a diagonal matrix.
|
|
We want this class to operate with other matrices, e.g. be part of expression, be printed,
|
|
or whatever.
|
|
But we only want to store the diagonal element.
|
|
|
|
* A simple solution :
|
|
|
|
.. compileblock ::
|
|
|
|
#include <triqs/arrays.hpp>
|
|
#include <iostream>
|
|
namespace triqs { namespace arrays { // better to put it in this namespace for ADL...
|
|
|
|
template<typename T> class immutable_diagonal_matrix_view {
|
|
|
|
array_view<T,1> data; // the diagonal stored as a 1d array
|
|
|
|
public:
|
|
|
|
immutable_diagonal_matrix_view(array_view<T,1> v) : data (v) {} // constructor
|
|
|
|
// the ImmutableMatrix concept
|
|
typedef indexmaps::cuboid::domain_t<2> domain_type;
|
|
domain_type domain() const { auto s = data.shape()[0]; return {s,s}; }
|
|
typedef T value_type;
|
|
T operator()(size_t i, size_t j) const { return (i==j ? data(i) : 0);} // just kronecker...
|
|
|
|
friend std::ostream & operator<<(std::ostream & out, immutable_diagonal_matrix_view const & d)
|
|
{return out<<"diagonal_matrix "<<d.data;}
|
|
};
|
|
|
|
// Marking this class as belonging to the Matrix & Vector algebra.
|
|
template<typename T> struct ImmutableMatrix<immutable_diagonal_matrix_view<T>> : std::true_type{};
|
|
}}
|
|
|
|
/// TESTING
|
|
using namespace triqs::arrays;
|
|
int main(int argc, char **argv) {
|
|
auto a = array<int,1> {1,2,3,4};
|
|
auto d = immutable_diagonal_matrix_view<int>{a};
|
|
std::cout << "domain = " << d.domain()<< std::endl;
|
|
std::cout << "d = "<< d << std::endl;
|
|
std::cout << "2*d = "<< make_matrix(2*d) << std::endl;
|
|
std::cout << "d*d = "<< matrix<int>(d*d) << std::endl;
|
|
}
|
|
|
|
|
|
* Discussion
|
|
|
|
* Of course, this solution is not perfect. Several algorithms could be optimised if we know that a matrix is diagonal.
|
|
E.g. multiplying a diagonal matrix by a full matrix. Currently, it creates a full matrix from the diagonal one, and
|
|
call gemm. This is clearly not optimal.
|
|
|
|
However, this is not the point.
|
|
|
|
This class *just works* out of the box, and takes only a few minutes to write.
|
|
One can of course then work more and specialize e.g. the operator * to optimize the multiplication,
|
|
or any other algorithm, `if and when this is necesssary`. That is an implementation detail,
|
|
that be done later, or by someone else in the team, without stopping the work.
|
|
|
|
* One can generalize for a Mutable diagonal matrix. Left as an exercise...
|
|
|
|
|
|
|
|
|