3
0
mirror of https://github.com/triqs/dft_tools synced 2024-09-10 21:04:46 +02:00
dft_tools/fortran/dmftproj/orthogonal_wannier.f
2013-07-23 20:55:29 +02:00

594 lines
26 KiB
Fortran

c ******************************************************************************
c
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
c
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
c
c TRIQS is free software: you can redistribute it and/or modify it under the
c terms of the GNU General Public License as published by the Free Software
c Foundation, either version 3 of the License, or (at your option) any later
c version.
c
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
c details.
c
c You should have received a copy of the GNU General Public License along with
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
c
c *****************************************************************************/
SUBROUTINE orthogonal_wannier
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C %% %%
C %% This subroutine orthonormalizes the Wannier-like functions %%
C %% obtained with the projectors P(icrorb,ik,is), in order to %%
C %% get a set of "true" Wannier orbitals. %%
C %% %%
C %% Only the correlated orbitals are treated here. %%
C %% %%
C %% THIS VERSION CAN NOT BE USED WITH SPIN-ORBIT %%
C %% (since the calculation is made independently for up/dn states) %%
C %% THIS VERSION CAN BE USED WITH SPIN-POLARIZED INPUT FILES. %%
C %% %%
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C Definiton of the variables :
C ----------------------------
USE almblm_data
USE common_data
USE prnt
USE projections
USE reps
IMPLICIT NONE
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: Dmat, D_orth, D
INTEGER :: is, ik, l, nbnd, ndim, isrt, nbbot, nbtop
INTEGER :: icrorb, ind1, ind2, ib, iatom
INTEGER :: m1, m2, irep
C
WRITE(buf,'(a)')'Orthonormalization of the projectors...'
CALL printout(0)
CALL printout(0)
C
IF(ncrorb==0) RETURN
C
C =====================================
C Creation of the overlap matrix Dmat :
C =====================================
C
C -----------------------------------------------------------
C Determination of the dimension ndim of the overlap matrix :
C -----------------------------------------------------------
ndim=0
C Loop on the correlated orbitals
DO icrorb=1,ncrorb
isrt=crorb(icrorb)%sort
l=crorb(icrorb)%l
C Since this subroutine is used only in the case without SO,
C the correlated ireps can be considered if there are any. (ifsplit=.TRUE.)
IF(crorb(icrorb)%ifsplit) THEN
C the value of l can not be 0 here, because ifsplit is necessary .FALSE.
C for s-orbital (restriction in dmftproj.f)
DO irep=1,reptrans(l,isrt)%nreps
IF(crorb(icrorb)%correp(irep))
& ndim=ndim+reptrans(l,isrt)%dreps(irep)
C The dimension of the irep is added to ndim.
ENDDO
ELSE
C If no particular irep is considered (ifsplit=.FALSE.),
C The whole matrix of the representation is considered.
ndim=ndim+2*l+1
ENDIF
ENDDO
C ------------------
C Creation of Dmat :
C ------------------
ALLOCATE(Dmat(1:ndim,1:ndim))
C
C =====================================================================
C Computation of the orthonormalized Wannier functions and projectors :
C =====================================================================
C The computation is performed for each k_point and each spin-value independently
C because they are good quantum numbers.
DO ik=1,nk
DO is=1,ns
C Only the k-points with inlcuded bands are considered for the projectors.
IF(.NOT.kp(ik,is)%included) CYCLE
nbnd=kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1
nbbot=kp(ik,is)%nb_bot
nbtop=kp(ik,is)%nb_top
ALLOCATE(D(1:ndim,1:nbnd))
C
C --------------------------------
C Initialization of the D matrix :
C --------------------------------
C This D matrix of size ndim*nbnd is the complete "projector matrix"
C which enables to go from the Wannier-like basis |u_orb> to the Bloch states |ik,ib>.
ind1=0
DO icrorb=1,ncrorb
isrt=crorb(icrorb)%sort
l=crorb(icrorb)%l
C If l=0, there only possible irep is the whole matrix itself.
IF (l==0) THEN
D(ind1+1,1:nbnd)=pr_crorb(icrorb,ik,is)%
& mat_rep(1,nbbot:nbtop)
ind1=ind1+1
ELSE
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
IF(crorb(icrorb)%ifsplit) THEN
C the value of l can not be 0 here, because ifsplit is necessary .FALSE.
C for s-orbital (restriction in dmftproj.f)
m1=-l-1
DO irep=1,reptrans(l,isrt)%nreps
IF(crorb(icrorb)%correp(irep)) THEN
m2=m1+reptrans(l,isrt)%dreps(irep)
ind2=ind1+reptrans(l,isrt)%dreps(irep)
C Since there is no SO, prcrorb%matrep is of size 2*l+1, from -l to l
C (the basis which mix up/dn states are not possible here.)
C The states range from m1+1 to m2 in the irep.
C The corresponding projector is stored from the line (ind1+1) to the line ind2, in the D matrix.
D(ind1+1:ind2,1:nbnd)=pr_crorb(icrorb,ik,is)%
& mat_rep(m1+1:m2,nbbot:nbtop)
ind1=ind2
ENDIF
m1=m1+reptrans(l,isrt)%dreps(irep)
ENDDO
ELSE
C The projectors of the whole correlated representation is considered. (ifsplit=.FALSE.)
ind2=ind1+2*l+1
C Since there is no SO, prcrorb%matrep is of size 2*l+1, from -l to l.
C (the basis which mix up/dn states are not possible here.)
C The corresponding projection matrix is stored from the line (ind1+1) to the line ind2, in the D matrix.
D(ind1+1:ind2,1:nbnd)=pr_crorb(icrorb,ik,is)%
& mat_rep(-l:l,nbbot:nbtop)
ind1=ind2
ENDIF ! End of the ifsplit if-then-else
ENDIF ! End of the l=0 if-then-else
ENDDO ! End of the icrorb loop
C
C ----------------------------------------
C Computation of the overlap matrix Dmat :
C ----------------------------------------
C The overlap matrix is stored in Dmat = D*transpose(conjugate(D))
CALL ZGEMM('N','C',ndim,ndim,nbnd,DCMPLX(1.D0,0.D0),
& D,ndim,D,ndim,DCMPLX(0.D0,0.D0),Dmat,ndim)
C
C -------------------------------------------
C Computation of the matrix S = Dmat^{-1/2} :
C -------------------------------------------
CALL orthogonal_h(Dmat,ndim,.TRUE.)
C This matrix is stored in Dmat.
C
C -----------------------------------------------
C Computation of the orthonormalized projectors :
C -----------------------------------------------
C The calculation performed is the following : P=O^(-1/2)*P_tilde.
C Its value is stored in the matrix D_orth (of size ndim*nbnd)
ALLOCATE(D_orth(1:ndim,1:nbnd))
CALL ZGEMM('N','N',ndim,nbnd,ndim,DCMPLX(1.D0,0.D0),
& Dmat,ndim,D,ndim,DCMPLX(0.D0,0.D0),D_orth,ndim)
DEALLOCATE(D)
C
C --------------------------------------------------------------------------------
C Storing the value of the orthonormalized projectors in the pr_crorb structures :
C --------------------------------------------------------------------------------
ind1=0
DO icrorb=1,ncrorb
isrt=crorb(icrorb)%sort
l=crorb(icrorb)%l
C If l=0, there only possible irep is the whole matrix itself.
IF (l==0) THEN
pr_crorb(icrorb,ik,is)%mat_rep
& (1,nbbot:nbtop)=D_orth(ind1+1,1:nbnd)
ind1=ind1+1
ELSE
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
IF(crorb(icrorb)%ifsplit) THEN
C the value of l can not be 0 here, because ifsplit is necessary .FALSE.
C for s-orbital (restriction in dmftproj.f)
m1=-l-1
DO irep=1,reptrans(l,isrt)%nreps
IF(crorb(icrorb)%correp(irep)) THEN
m2=m1+reptrans(l,isrt)%dreps(irep)
ind2=ind1+reptrans(l,isrt)%dreps(irep)
C prcrorb%matrep is of size 2*l+1, from -l to l (the basis which mix up/dn states are not possible here.)
C In the D_orth matrix, the corresponding part of the projection matrix ranges from the line (ind1+1) to the line ind2.
C The projector associated to the ireps is stored in the prcrorb%matrep from m1+1 to m2.
pr_crorb(icrorb,ik,is)%
& mat_rep(m1+1:m2,nbbot:nbtop)=
& D_orth(ind1+1:ind2,1:nbnd)
ind1=ind2
ENDIF
m1=m1+reptrans(l,isrt)%dreps(irep)
ENDDO
ELSE
C The projectors of the whole correlated representation is considered. (ifsplit=.FALSE.)
ind2=ind1+2*l+1
C Since there is no SO, prcrorb%matrep is of size 2*l+1, from -l to l.
C (the basis which mix up/dn states are not possible here.)
C In the D_orth matrix, the projection matrix ranges from the line (ind1+1) to the line ind2.
C The projector is stored in the pr_crorb%matrep (from -l to l).
pr_crorb(icrorb,ik,is)%mat_rep
& (-l:l,nbbot:nbtop)=D_orth(ind1+1:ind2,1:nbnd)
ind1=ind2
ENDIF ! End of the ifsplit if-then-else
ENDIF ! End of the l=0 if-then-else
ENDDO ! End of the icrorb loop
C prcrorb%matrep contains now the orthonormalized projectors.
DEALLOCATE(D_orth)
ENDDO ! End of the loop on is
ENDDO ! End of the loop on ik
DEALLOCATE(Dmat)
C
C =============================================================================
C Printing the projectors with k-points 1 and nk in the file fort.18 for test :
C =============================================================================
DO icrorb=1,ncrorb
iatom=crorb(icrorb)%atom
isrt=crorb(icrorb)%sort
l=crorb(icrorb)%l
WRITE(18,'()')
WRITE(18,'(a)') 'apres othonormalizsation'
WRITE(18,'(a,i4)') 'icrorb = ', icrorb
WRITE(18,'(a,i4,a,i4)') 'isrt = ', isrt, ' l = ', l
IF (l==0) THEN
WRITE(18,'(a,i4)') 'ik = ', 1
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
IF (ifSP)
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
WRITE(18,'(a,i4)') 'ik = ', nk
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
IF (ifSP)
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
WRITE(18,'(a,i4)') 'ik = ', 1
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
WRITE(18,'(a,i4)') 'ik = ', nk
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
ELSE
WRITE(18,'(a,i4)') 'ik = ', 1
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
IF (ifSP)
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
WRITE(18,'(a,i4)') 'ik = ', nk
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
IF (ifSP)
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
ENDIF
ENDDO
C
RETURN
END
SUBROUTINE orthogonal_wannier_SO
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C %% %%
C %% This subroutine orthonormalizes the Wannier-like functions %%
C %% obtained with the projectors P(icrorb,ik,is), in order to %%
C %% get a set of "true" Wannier orbitals. %%
C %% %%
C %% Only the correlated orbitals are treated here. %%
C %% %%
C %% THIS VERSION MUST BE USED WITH SPIN-ORBIT %%
C %% (since the calculation for up/dn states is made simultaneously) %%
C %% THIS VERSION CAN NOT BE USED WITHOUT SPIN-POLARIZED INPUT FILES.%%
C %% %%
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C Definiton of the variables :
C ----------------------------
USE almblm_data
USE common_data
USE prnt
USE projections
USE reps
IMPLICIT NONE
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: Dmat, D_orth, D
INTEGER :: is, ik, l, nbnd, ndim, isrt, nbbot, nbtop
INTEGER :: icrorb, ind1, ind2, iatom, ib
INTEGER :: m1, m2, irep
C
WRITE(buf,'(a)')'Orthonormalization of the projectors...'
CALL printout(0)
CALL printout(0)
C ---------------------------------------------------------------------------------------
C Interruption of the prgm if there is no dn part of pr_crorb.
C -------------------------
C
IF(.not.ifSP) THEN
WRITE(buf,'(a,a,i2,a)')'The projectors on ',
& 'the dn states are required for isrt = ',isrt,
& ' but there is no spin-polarized input files.'
CALL printout(0)
WRITE(buf,'(a)')'END OF THE PRGM'
CALL printout(0)
STOP
ENDIF
C ---------------------------------------------------------------------------------------
C
C =====================================
C Creation of the overlap matrix Dmat :
C =====================================
C
C -----------------------------------------------------------
C Determination of the dimension ndim of the overlap matrix :
C -----------------------------------------------------------
ndim=0
C Loop on the correlated orbitals
DO icrorb=1,ncrorb
isrt=crorb(icrorb)%sort
l=crorb(icrorb)%l
C The case l=0 is a particular case of "non-mixing" basis.
C --------------------------------------------------------
IF (l==0) THEN
C Since this subroutine is used only in the case with SO,
C the only irep possible for s-orbital is the matrix itself.
ndim=ndim+2
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
C ---------------------------------------------------------------------------------------------
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
IF(crorb(icrorb)%ifsplit) THEN
DO irep=1,reptrans(l,isrt)%nreps
IF(crorb(icrorb)%correp(irep)) THEN
ndim=ndim+reptrans(l,isrt)%dreps(irep)
ENDIF
C The dimension of the irep is added to ndim.
ENDDO
ELSE
C If no particular irep is considered (ifsplit=.FALSE.),
C The whole matrix of the representation is considered.
ndim=ndim+2*(2*l+1)
ENDIF
C If the basis representation can be reduce to the up/up block (basis without "mixing").
C --------------------------------------------------------------------------------------
ELSE
C Since this subroutine is used only in the case with SO,
C the only irep possible for this orbital is the matrix itself.
ndim=ndim+2*(2*l+1)
ENDIF
ENDDO
C ------------------
C Creation of Dmat :
C ------------------
ALLOCATE(Dmat(1:ndim,1:ndim))
C
C =====================================================================
C Computation of the orthonormalized Wannier functions and projectors :
C =====================================================================
C The computation is performed for each k_point independently
C because they are still good quantum numbers.
DO ik=1,nk
C Only the k-points with inlcuded bands are considered for the projectors.
IF(.NOT.kp(ik,1)%included) CYCLE
nbnd=kp(ik,1)%nb_top-kp(ik,1)%nb_bot+1
nbbot=kp(ik,1)%nb_bot
nbtop=kp(ik,1)%nb_top
C it was checked that nbtop(up)=nbtop(dn) and nbbot(up)=nbbot(dn)
C for a computation with SO [in set_projections.f]
ALLOCATE(D(1:ndim,1:nbnd))
C
C --------------------------------
C Initialization of the D matrix :
C --------------------------------
C This D matrix of size ndim*nbnd is the complete "projector matrix"
C which enables to go from the Wannier-like basis |u_orb> to the Bloch states |ik,ib>.
ind1=0
DO icrorb=1,ncrorb
isrt=crorb(icrorb)%sort
l=crorb(icrorb)%l
C The case l=0 is a particular case of "non-mixing" basis.
C --------------------------------------------------------
IF (l==0) THEN
C the only irep possible for s-orbital is the matrix itself.
DO is=1,ns
C D(ind1,1:nbnd)=
C Bug correction 8.11.2012
D(ind1+1,1:nbnd)=
& pr_crorb(icrorb,ik,is)%mat_rep(1,nbbot:nbtop)
ind1=ind1+1
ENDDO
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
C ---------------------------------------------------------------------------------------------
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
C In this case, the projection matrix is stored in prcrorb%matrep with is=1.
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
IF (crorb(icrorb)%ifsplit) THEN
m1=0
DO irep=1,reptrans(l,isrt)%nreps
IF (crorb(icrorb)%correp(irep)) THEN
m2=m1+reptrans(l,isrt)%dreps(irep)
ind2=ind1+reptrans(l,isrt)%dreps(irep)
C The states range from m1+1 to m2 in the irep.
C The corresponding projector is stored from the line (ind1+1) to the line ind2, in the D matrix.
D(ind1+1:ind2,1:nbnd)=pr_crorb(icrorb,ik,1)%
& mat_rep(m1+1:m2,nbbot:nbtop)
ind1=ind2
ENDIF
m1=m1+reptrans(l,isrt)%dreps(irep)
ENDDO
ELSE
C The projectors of the whole correlated representation is considered. (ifsplit=.FALSE.)
ind2=ind1+2*(2*l+1)
C The corresponding projection matrix is stored from the line (ind1+1) to the line ind2, in the D matrix.
D(ind1+1:ind2,1:nbnd)=pr_crorb(icrorb,ik,1)%
& mat_rep(1:2*(2*l+1),nbbot:nbtop)
ind1=ind2
ENDIF ! End of the ifsplit if-then-else
C If the basis representation can be reduce to the up/up block (basis without "mixing").
C --------------------------------------------------------------------------------------
ELSE
C the only irep possible for such an orbital is the matrix itself.
DO is=1,ns
ind2=ind1+2*l+1
D(ind1+1:ind2,1:nbnd)=
& pr_crorb(icrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop)
ind1=ind2
ENDDO
ENDIF ! End of the ifmixing if-then-else
ENDDO ! End of the icrorb loop
C
C ----------------------------------------
C Computation of the overlap matrix Dmat :
C ----------------------------------------
C The overlap matrix is stored in Dmat = D*transpose(conjugate(D))
CALL ZGEMM('N','C',ndim,ndim,nbnd,DCMPLX(1.D0,0.D0),
& D,ndim,D,ndim,DCMPLX(0.D0,0.D0),Dmat,ndim)
C
C -------------------------------------------
C Computation of the matrix S = Dmat^{-1/2} :
C -------------------------------------------
CALL orthogonal_h(Dmat,ndim,.TRUE.)
C This matrix is stored in Dmat.
C
C -----------------------------------------------
C Computation of the orthonormalized projectors :
C -----------------------------------------------
C The calculation performed is the following : P=O^(-1/2)*P_tilde.
C Its value is stored in the matrix D_orth (of size ndim*nbnd)
ALLOCATE(D_orth(1:ndim,1:nbnd))
CALL ZGEMM('N','N',ndim,nbnd,ndim,DCMPLX(1.D0,0.D0),
& Dmat,ndim,D,ndim,DCMPLX(0.D0,0.D0),D_orth,ndim)
DEALLOCATE(D)
C
C --------------------------------------------------------------------------------
C Storing the value of the orthonormalized projectors in the pr_crorb structures :
C --------------------------------------------------------------------------------
ind1=0
DO icrorb=1,ncrorb
isrt=crorb(icrorb)%sort
l=crorb(icrorb)%l
C The case l=0 is a particular case of "non-mixing" basis.
C --------------------------------------------------------
IF (l==0) THEN
C the only irep possible for s-orbital is the matrix itself.
DO is=1,ns
pr_crorb(icrorb,ik,is)%mat_rep(1,nbbot:nbtop)=
& D_orth(ind1+1,1:nbnd)
ind1=ind1+1
ENDDO
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
C ---------------------------------------------------------------------------------------------
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
C the projectors of the correlated ireps are considered if there are any. (ifsplit=.TRUE.)
IF(crorb(icrorb)%ifsplit) THEN
m1=0
DO irep=1,reptrans(l,isrt)%nreps
IF (crorb(icrorb)%correp(irep)) THEN
m2=m1+reptrans(l,isrt)%dreps(irep)
ind2=ind1+reptrans(l,isrt)%dreps(irep)
C In the D_orth matrix, the corresponding part of the projection matrix ranges from the line (ind1+1) to the line ind2.
C The projector associated to the ireps is stored in the prcrorb%matrep from m1+1 to m2.
pr_crorb(icrorb,ik,1)%mat_rep(m1+1:m2,nbbot:nbtop)
& =D_orth(ind1+1:ind2,1:nbnd)
ind1=ind2
ENDIF
m1=m1+reptrans(l,isrt)%dreps(irep)
ENDDO
ELSE
C The projectors of the whole correlated representation is considered. (ifsplit=.FALSE.)
ind2=ind1+2*(2*l+1)
C The corresponding projection matrix is stored from the line (ind1+1) to the line ind2, in the D matrix.
pr_crorb(icrorb,ik,1)%mat_rep(1:2*(2*l+1),nbbot:nbtop)
& =D_orth(ind1+1:ind2,1:nbnd)
ind1=ind2
ENDIF ! End of the ifsplit if-then-else
C If the basis representation can be reduce to the up/up block (basis without "mixing").
C --------------------------------------------------------------------------------------
ELSE
C the only irep possible for this orbital is the matrix itself.
DO is=1,ns
ind2=ind1+2*l+1
pr_crorb(icrorb,ik,is)%mat_rep(-l:l,nbbot:nbtop)
& =D_orth(ind1+1:ind2,1:nbnd)
ind1=ind2
ENDDO
ENDIF ! End of the ifmixing if-then-else
ENDDO ! End of the icrorb loop
DEALLOCATE(D_orth)
ENDDO ! End of the loop on ik
DEALLOCATE(Dmat)
C
C =============================================================================
C Printing the projectors with k-points 1 and nk in the file fort.18 for test :
C =============================================================================
DO icrorb=1,ncrorb
iatom=crorb(icrorb)%atom
isrt=crorb(icrorb)%sort
l=crorb(icrorb)%l
WRITE(18,'()')
WRITE(18,'(a)') 'apres othonormalizsation'
WRITE(18,'(a,i4)') 'icrorb = ', icrorb
WRITE(18,'(a,i4,a,i4)') 'isrt = ', isrt, ' l = ', l
IF (l==0) THEN
WRITE(18,'(a,i4)') 'ik = ', 1
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
IF (ifSP)
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
WRITE(18,'(a,i4)') 'ik = ', nk
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
IF (ifSP)
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
WRITE(18,'(a,i4)') 'ik = ', 1
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
WRITE(18,'(a,i4)') 'ik = ', nk
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
ELSE
WRITE(18,'(a,i4)') 'ik = ', 1
DO ib = kp(1,1)%nb_bot,kp(1,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,1,1)%mat_rep(:,ib)
IF (ifSP)
& WRITE(18,*) pr_crorb(icrorb,1,2)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
WRITE(18,'(a,i4)') 'ik = ', nk
DO ib = kp(nk,1)%nb_bot,kp(nk,1)%nb_top
WRITE(18,*) pr_crorb(icrorb,nk,1)%mat_rep(:,ib)
IF (ifSP)
& WRITE(18,*) pr_crorb(icrorb,nk,2)%mat_rep(:,ib)
WRITE(18,'()')
ENDDO
ENDIF
ENDDO
C
RETURN
END