3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 03:33:50 +01:00
dft_tools/doc/reference/c++/gf/gf_imfreq.rst
Olivier Parcollet bdac3e159c work on doc for gf, and details.
- little details : code cleaning, clang formatting,  along
with documentation writing for c++ gf.
- separated the mesh in small class for better doc.
- work on documentation : reorganize specialisation, ...
2013-12-30 22:32:16 +01:00

122 lines
3.4 KiB
ReStructuredText

.. highlight:: c
.. _gf_imfreq:
Matsubara frequencies
==========================================================
This is a specialisation of :ref:`gf<gf_and_view>` for imaginary Matsubara frequencies.
Synopsis
------------
.. code::
gf<imfreq, Target, Opt>
The *Target* template parameter can take the following values :
+-------------------------+-----------------------------------------------------+
| Target | Meaning |
+=========================+=====================================================+
| scalar_valued | The function is scalar valued (double, complex...). |
+-------------------------+-----------------------------------------------------+
| matrix_valued [default] | The function is matrix valued. |
+-------------------------+-----------------------------------------------------+
Domain & mesh
----------------
The domain is :doxy:`matsubara_freq_domain<triqs::gfs::matsubara_domain>`.
The Matsubara frequencies are :math:`\omega_n=\frac{(2n+1)\pi}{\beta}` for fermions and :math:`\omega_n=\frac{2n\pi}{\beta}` for bosons.
The mesh is :doxy:`matsubara_freq_mesh<triqs::gfs::matsubara_freq_mesh>`.
Singularity
-------------
The singularity is a high frequency expansion, :ref:`gf_tail`.
Evaluation method
---------------------
* No interpolation.
* Return type :
* If Target==scalar_valued : a complex
* If Target==matrix_valued : an object modeling ImmutableMatrix concept.
* When the point is outside of the mesh, the evaluation of the gf returns :
* the evaluation of the high frequency tail if no_tail is not set.
* 0 otherwise
Data storage
---------------
* If Target==scalar_valued :
* `data_t` : 1d array of complex<double>.
* g.data()(i) is the value of g for the i-th point of the mesh.
* If Target==matrix_valued :
* `data_t` : 3d array (C ordered) of complex<double>.
* g.data()(i, range(), range()) is the value of g for the i-th point of the mesh.
HDF5 storage convention
---------------------------
h5 tag : `ImFreq`
TODO : DECIDE if we have 2 tag, one for scalar, one for matrix....
Examples
---------
.. compileblock::
#include <triqs/gfs.hpp>
using namespace triqs::gfs;
int main(){
double beta=10;
int Nfreq =100;
// --- first a matrix_valued function ------------
// First give information to build the mesh, second to build the target
auto g1 = gf<imfreq> { {beta,Fermion,Nfreq}, {1,1} };
// or a more verbose/explicit form ...
auto g2 = gf<imfreq> { gf_mesh<imfreq>{beta,Fermion,Nfreq}, make_shape(1,1) };
// Filling the gf with something...
triqs::clef::placeholder<0> wn_;
g1(wn_) << 1/ (wn_ + 2);
// evaluation at n=3
std::cout << g1(3) << " == "<< 1/ ( 1_j * M_PI / beta * (2*3+1) + 2) << std::endl;
// the high frequency expansion was automatically computed.
//std::cout << g1.singularity() << std::endl; // a bit verbose..
// --- a scalar_valued function ------------
// same a before, but without the same of the target space ...
auto g3 = gf<imfreq,scalar_valued> { {beta,Fermion,Nfreq} };
auto g4 = gf<imfreq,scalar_valued> { gf_mesh<imfreq>{beta,Fermion,Nfreq} };
g3(wn_) << 1/ (wn_ + 2);
// evaluation at n=3.
std::cout << g3(3) << " == "<< 1/ ( 1_j * std::acos(-1) / beta * (2*3+1) + 2) << std::endl;
}