mirror of
https://github.com/triqs/dft_tools
synced 2024-11-13 01:23:50 +01:00
c202286341
* elk-transport * minor updates * specify explicitly fortran compiler and python exe in CMAKE Co-authored-by: Alexander Hampel <ahampel@flatironinstitute.org>
1199 lines
53 KiB
Python
1199 lines
53 KiB
Python
##########################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
##########################################################################
|
|
|
|
"""
|
|
Wannier90 to HDF5 converter for TRIQS/dft_tools
|
|
|
|
Written by Gabriele Sclauzero (Materials Theory, ETH Zurich), Dec 2015 -- Jan 2016,
|
|
updated by Maximilian Merkel (Materials Theory, ETH Zurich), Aug 2020 -- Feb 2022,
|
|
and by Sophie Beck (Materials Theory, ETH Zurich), Sep 2020 -- Apr 2021,
|
|
under the supervision of Claude Ederer (Materials Theory).
|
|
Partially based on previous work by K. Dymkovski and the TRIQS/dft_tools team.
|
|
|
|
Limitations of the current implementation:
|
|
- the T rotation matrices are not used in this implementation
|
|
|
|
Things to be improved/checked:
|
|
- the case with SP=1 is only half implemented and never tested (do we need to
|
|
define rot_mat_time_inv also if symm_op = 0?)
|
|
- the calculation of rot_mat in find_rot_mat() relies on the eigenvalues of H(0);
|
|
this might fail in presence of degenerate eigenvalues (now just prints warning)
|
|
- make the code more MPI safe (error handling): if we run with more than one process
|
|
and an error occurs on the masternode, the calculation does not abort
|
|
- in case of disentanglement, the outer window being close to Kohn-Sham energies
|
|
can cause a problem in creating the udis_mat_spin in read_wannier90data
|
|
- bloch_basis on SO coupled calculations has never been tested but might work
|
|
- would be helpful to read the order of orbitals from the nnkp or wout file
|
|
and save it to, e.g., misc_subgrp for codes working on the generated h5
|
|
"""
|
|
|
|
import os.path
|
|
from itertools import product
|
|
import numpy as np
|
|
|
|
from h5 import HDFArchive
|
|
from triqs.utility import mpi
|
|
from .converter_tools import ConverterTools
|
|
|
|
class Wannier90Converter(ConverterTools):
|
|
"""
|
|
Conversion from Wannier90 output to an hdf5 file that can be used as input
|
|
for the SumkDFT class.
|
|
"""
|
|
|
|
def __init__(self, seedname, hdf_filename=None, dft_subgrp='dft_input',
|
|
symmcorr_subgrp='dft_symmcorr_input', misc_subgrp='dft_misc_input',
|
|
repacking=False, rot_mat_type='hloc_diag', bloch_basis=False, add_lambda=None,
|
|
w90zero=2e-6, reorder_orbital_and_spin_vasp5=False):
|
|
"""
|
|
Initialise the class.
|
|
|
|
Parameters
|
|
----------
|
|
seedname : string
|
|
Base name of Wannier90 files
|
|
hdf_filename : string, optional
|
|
Name of hdf5 archive to be created
|
|
dft_subgrp : string, optional
|
|
Name of subgroup storing necessary DFT data
|
|
symmcorr_subgrp : string, optional
|
|
Name of subgroup storing correlated-shell symmetry data
|
|
misc_subgrp : string, optional
|
|
Name of subgroup storing miscellaneous DFT data.
|
|
repacking : boolean, optional
|
|
Does the hdf5 archive need to be repacked to save space?
|
|
rot_mat_type : string, optional
|
|
Type of rot_mat used
|
|
Can be 'hloc_diag', 'wannier', 'none'
|
|
bloch_basis : boolean, optional
|
|
Should the Hamiltonian be written in Bloch rather than Wannier basis?
|
|
add_lambda : list of floats, optional
|
|
Add local spin-orbit term
|
|
w90zero : float, optional
|
|
Threshold on symmetry checks of Hamiltonian and rot_mat
|
|
reorder_orbital_and_spin_vasp5 : bool, optional
|
|
Is false for output from VASP 6 and Quantum Espresso
|
|
Reorder orbitals and spins from the VASP 5 convention of first all
|
|
orbitals with up and then all orbitals with down to the "usual"
|
|
convention of every up orbital immediately being followed by its
|
|
corresponding down orbital
|
|
"""
|
|
self._name = 'Wannier90Converter'
|
|
assert isinstance(seedname, str), self._name + \
|
|
': Please provide the DFT files\' base name as a string.'
|
|
if hdf_filename is None:
|
|
hdf_filename = seedname + '.h5'
|
|
self.hdf_file = hdf_filename
|
|
# if the w90 output is seedname_hr.dat, the input file for the
|
|
# converter must be called seedname.inp
|
|
self.inp_file = seedname + '.inp'
|
|
self.w90_seed = seedname
|
|
self.dft_subgrp = dft_subgrp
|
|
self.symmcorr_subgrp = symmcorr_subgrp
|
|
self.misc_subgrp = misc_subgrp
|
|
self.fortran_to_replace = {'D': 'E'}
|
|
# threshold below which matrix elements from wannier90 should be
|
|
# considered equal
|
|
self._w90zero = w90zero
|
|
self.rot_mat_type = rot_mat_type
|
|
self.bloch_basis = bloch_basis
|
|
self.add_lambda = add_lambda
|
|
self.reorder_orbital_and_spin_vasp5 = reorder_orbital_and_spin_vasp5
|
|
if self.add_lambda is not None and len(self.add_lambda) != 3:
|
|
raise ValueError('If specifying add_lambda, give three values.')
|
|
if self.rot_mat_type not in ('hloc_diag', 'wannier', 'none'):
|
|
raise ValueError('Parameter rot_mat_type invalid, should be one of'
|
|
+ '"hloc_diag", "wannier", "none"')
|
|
|
|
# Checks if h5 file is there and repacks it if wanted:
|
|
if (os.path.exists(self.hdf_file) and repacking):
|
|
ConverterTools.repack(self)
|
|
|
|
|
|
def convert_dft_input(self):
|
|
"""
|
|
Reads the appropriate files and stores the data for the
|
|
|
|
- dft_subgrp
|
|
- symmcorr_subgrp
|
|
- misc_subgrp
|
|
|
|
in the hdf5 archive.
|
|
"""
|
|
# Reads in inp file
|
|
input_params = None
|
|
if mpi.is_master_node():
|
|
input_params = read_input_file(self.inp_file, self.fortran_to_replace)
|
|
(kmesh_mode, kmesh_size, density_required, n_corr_shells,
|
|
corr_shells, n_shells, shells, fermi_energy) = mpi.bcast(input_params)
|
|
if density_required is None and not self.bloch_basis:
|
|
raise ValueError('Required density necessary if not in bloch basis')
|
|
|
|
shells, corr_shells, SO, SP, n_spin_blocks = check_and_adapt_for_soc(shells, corr_shells,
|
|
self.bloch_basis, self.add_lambda)
|
|
|
|
# Determines sum of dimensions of all impurities
|
|
dim_corr_shells = sum([sh['dim'] for sh in corr_shells])
|
|
mpi.report('Total number of WFs expected in the correlated shells: {}'.format(dim_corr_shells))
|
|
|
|
# determine the number of inequivalent correlated shells and maps,
|
|
# needed for further processing
|
|
n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = self.det_shell_equivalence(corr_shells)
|
|
mpi.report('Number of inequivalent shells: {}'.format(n_inequiv_shells))
|
|
mpi.report('Shell representatives: {}'.format(inequiv_to_corr))
|
|
shells_map = [inequiv_to_corr[corr_to_inequiv[icrsh]]
|
|
for icrsh in range(n_corr_shells)]
|
|
mpi.report('Mapping: {}'.format(shells_map))
|
|
|
|
# Second, let's read the file containing the Hamiltonian in WF basis
|
|
# produced by Wannier90
|
|
(wannier_hr, u_total, ks_eigenvals, r_vector, r_degeneracy, n_wannier, n_bands,
|
|
k_mesh_from_umat) = read_all_wannier90_data(n_spin_blocks, dim_corr_shells, self.w90_seed,
|
|
self.add_lambda, self.bloch_basis)
|
|
|
|
# Builds kmesh or uses kmesh from _u.mat
|
|
if self.bloch_basis:
|
|
# If output is in bloch_basis, we use k mesh from seedname_u.mat for consistency
|
|
kpts = k_mesh_from_umat
|
|
n_k = len(kpts)
|
|
kpt_weights = np.full(n_k, 1/n_k)
|
|
mpi.report('Using k mesh from seedname_u.mat with {} k points.'.format(n_k))
|
|
else:
|
|
if kmesh_mode == -1:
|
|
# The size of the k-point mesh is determined from the largest R vector.
|
|
# It will only be the same as in the win when kmesh_size is odd, because of the
|
|
# wannier90 convention: if we have kmesh_size k-points along the i-th direction,
|
|
# then we should get 2*(kmesh_size/2)+kmesh_size%2 R points along that direction
|
|
kmesh_size = [2 * r_vector[:, idir].max() + 1 for idir in range(3)]
|
|
mpi.report('Building k-point grid with dimension {} x {} x {}.'.format(*kmesh_size))
|
|
n_k, kpts, kpt_weights = build_kmesh(kmesh_size, kmesh_mode if kmesh_mode >=0 else 0)
|
|
|
|
# Reads misc input needed for CSC calculations
|
|
if self.bloch_basis:
|
|
misc_results = None
|
|
if mpi.is_master_node():
|
|
misc_results = read_misc_input(self.w90_seed, n_spin_blocks, n_k)
|
|
f_weights, band_window, fermi_energy, kpt_basis = mpi.bcast(misc_results)
|
|
|
|
# Get density from k-point weighted average and sum over all spins and bands
|
|
density_required = np.sum(f_weights.T * kpt_weights) * (2 - SP)
|
|
mpi.report('Overwriting required density with DFT result {:.5f}'.format(density_required))
|
|
mpi.report('and using the DFT Fermi energy {:.5f} eV\n'.format(fermi_energy))
|
|
|
|
# Switches from Vasp 5 + wannier90 order to triqs order
|
|
if SO and not self.add_lambda and self.reorder_orbital_and_spin_vasp5:
|
|
wannier_hr, u_total = reorder_orbital_and_spin(n_wannier, wannier_hr, u_total)
|
|
|
|
# Finds R=0 index
|
|
r_zero_index = np.nonzero(np.all(r_vector == 0, axis=1))[0][0]
|
|
|
|
# Increases Hamiltonian size and adds lambda term
|
|
if self.add_lambda:
|
|
# scale Hamiltonian by 2 to account for spin DOF
|
|
wannier_hr = np.array([[np.kron(hr, np.eye(2)) for hr in wannier_hr[0]]])
|
|
wannier_hr[0, r_zero_index] += generate_local_so_matrix_t2g(self.add_lambda, n_corr_shells, n_wannier)
|
|
|
|
with np.printoptions(linewidth=100, formatter={'complexfloat': '{:+.3f}'.format}):
|
|
mpi.report('Local Hamiltonian including spin-orbit coupling:')
|
|
mpi.report(wannier_hr[0, r_zero_index])
|
|
|
|
# Runs tests in H(R)
|
|
check_hr(wannier_hr, self._w90zero, r_zero_index)
|
|
|
|
# Determines rot_mat
|
|
wannier_hr0 = wannier_hr[:, r_zero_index]
|
|
rot_mat = find_rot_mat(n_corr_shells, corr_shells, shells_map, wannier_hr0,
|
|
self.rot_mat_type, self._w90zero, n_spin_blocks)
|
|
if rot_mat is None:
|
|
raise ValueError('Something went wrong in the creation of rotation matrices.')
|
|
|
|
# Renormalizes k-point weights if calculations are spin-polarized
|
|
if SP == 1 and SO == 0:
|
|
kpt_weights *= 0.5
|
|
|
|
# Sets the projectors
|
|
# Projectors are either identity matrix blocks to use with Wannier basis
|
|
# OR correspond to the overlap between Kohn-Sham and Wannier orbitals as
|
|
# P_{nu,alpha](k) = <w_{alpha,k}|psi_{nu,k}>
|
|
# NOTE: we assume that the correlated orbitals appear at the beginning of the H(R)
|
|
# file and that the ordering of MLWFs matches the corr_shell info from
|
|
# the input.
|
|
proj_mat = np.zeros([n_k, n_spin_blocks, n_corr_shells,
|
|
max(crsh['dim'] for crsh in corr_shells), n_bands], dtype=complex)
|
|
if not self.bloch_basis:
|
|
u_total = np.array([[np.identity(n_wannier)] * n_k] * n_spin_blocks)
|
|
for isp in range(n_spin_blocks):
|
|
iorb = 0
|
|
for icrsh in range(n_corr_shells):
|
|
dim = corr_shells[icrsh]['dim']
|
|
proj_mat[:, isp, icrsh, :dim, :] = u_total[isp, :, iorb:iorb+dim, :]
|
|
iorb += dim
|
|
|
|
# Then, compute the hoppings in reciprocal space
|
|
wannier_hk = fourier_transform_hamiltonian(wannier_hr, r_vector, r_degeneracy, kpts)
|
|
|
|
diag_iterator = range(n_bands)
|
|
if self.bloch_basis:
|
|
# if bloch_basis is True, use Kohn-Sham eigenvalues as hamk
|
|
# this ensures that the calculation of the band-correlation energy
|
|
# is consistent with SumkDFT's calc_density_correction
|
|
hopping = np.zeros([n_k, n_spin_blocks, n_bands, n_bands], dtype=complex)
|
|
hopping[:, :, diag_iterator, diag_iterator] = ks_eigenvals.transpose((1, 0, 2))
|
|
check_bloch_basis_hk(n_corr_shells, corr_shells, n_k, n_spin_blocks, n_bands,
|
|
proj_mat, dim_corr_shells, wannier_hk, hopping)
|
|
else:
|
|
hopping = wannier_hk.transpose((1, 0, 2, 3))
|
|
check_wannier_basis_hk(hopping, dim_corr_shells)
|
|
hopping[:, :, diag_iterator, diag_iterator] = hopping[:, :, diag_iterator, diag_iterator].real + 0j
|
|
|
|
hopping[:, :, diag_iterator, diag_iterator] -= fermi_energy
|
|
mpi.report('Subtracting {:.5f} eV from the Fermi level.'.format(fermi_energy))
|
|
|
|
# Prints Hamiltonian at first k point
|
|
for icrsh in range(n_corr_shells):
|
|
ik = 0
|
|
isp = 0
|
|
dim = corr_shells[icrsh]['dim']
|
|
hamiltonian = np.einsum('ji,jk,kl,ml,mn->in', rot_mat[icrsh].conj(), proj_mat[ik][isp][icrsh, :dim],
|
|
hopping[ik, isp], proj_mat[ik][isp][icrsh, :dim].conj(), rot_mat[icrsh])
|
|
with np.printoptions(floatmode='fixed', precision=3, suppress=True, linewidth=100):
|
|
mpi.report(f'Hamiltonian at first k point for corr. shell {icrsh}', hamiltonian)
|
|
|
|
# Sets variables that are the same for every input
|
|
symm_op = 0 # Wannier90 does not use symmetries to reduce the k-points
|
|
charge_below = 0 # total charge below energy window NOT used for now
|
|
energy_unit = 1.0 # should be understood as eV units
|
|
hopping *= energy_unit
|
|
# not used in this version: reset to dummy values?
|
|
n_reps = [1 for i in range(n_inequiv_shells)]
|
|
dim_reps = [0 for i in range(n_inequiv_shells)]
|
|
T = []
|
|
for ish in range(n_inequiv_shells):
|
|
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
|
|
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
|
T.append(np.zeros([lmax, lmax], dtype=complex))
|
|
# TODO: generalise to SP=1 (only partially done)
|
|
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
|
k_dep_projection = 0 # at the moment not really used, but might get important
|
|
use_rotations = 1
|
|
|
|
# bz_weights required by triqs h5 standard but soon to be replaced by kpt_weights
|
|
bz_weights = kpt_weights
|
|
# n_orbitals required by triqs h5 standard, which actually contains the number of bands
|
|
n_orbitals = np.full((n_k, n_spin_blocks), n_bands)
|
|
|
|
#new variable: dft_code - this determines which DFT code the inputs come from.
|
|
#used for certain routines within dft_tools if treating the inputs differently is required.
|
|
dft_code = 'w90'
|
|
|
|
# Finally, save all required data into the HDF archive:
|
|
if mpi.is_master_node():
|
|
with HDFArchive(self.hdf_file, 'a') as archive:
|
|
if self.dft_subgrp not in archive:
|
|
archive.create_group(self.dft_subgrp)
|
|
# The subgroup containing the data. If it does not exist, it is
|
|
# created. If it exists, the data is overwritten!
|
|
things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
|
|
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
|
|
'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
|
|
'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr', 'kpt_weights', 'kpts', 'dft_code']
|
|
if self.bloch_basis:
|
|
np.append(things_to_save, 'kpt_basis')
|
|
for it in things_to_save:
|
|
archive[self.dft_subgrp][it] = locals()[it]
|
|
|
|
# Store Fermi weights to 'dft_misc_input'
|
|
if self.misc_subgrp not in archive:
|
|
archive.create_group(self.misc_subgrp)
|
|
archive[self.misc_subgrp]['dft_fermi_energy'] = fermi_energy
|
|
if self.bloch_basis:
|
|
archive[self.misc_subgrp]['dft_fermi_weights'] = f_weights
|
|
archive[self.misc_subgrp]['band_window'] = band_window+1 # Change to 1-based index
|
|
archive[self.misc_subgrp]['kpts_cart'] = np.dot(kpts, kpt_basis.T)
|
|
mpi.barrier()
|
|
|
|
# Makes Fermi energy a class variable for testing
|
|
self.fermi_energy = fermi_energy
|
|
|
|
|
|
def read_input_file(inp_file, fortran_to_replace):
|
|
"""
|
|
Reads the input file.
|
|
|
|
We do not read shells, because we have no additional shells beyond correlated
|
|
ones, and the data will be copied from corr_shells into shells (see below).
|
|
|
|
Raises NotImplementedError if an unknown kmesh mode is chosen.
|
|
"""
|
|
mpi.report('\nReading input from {}'.format(inp_file))
|
|
|
|
def filter_and_replace(file, to_replace):
|
|
"""
|
|
Filters for comments (#) and empty lines and replaces the to_replace entries.
|
|
Similar to triqs_dft_tools.converters.converter_tools.read_fortran_file.
|
|
"""
|
|
for line in file:
|
|
line = line.split('#')[0].strip()
|
|
if not line:
|
|
continue
|
|
for old, new in to_replace.items():
|
|
line = line.replace(old, new)
|
|
yield line.split()
|
|
|
|
# Reads in filtered input file
|
|
with open(inp_file, 'r') as file:
|
|
file_content = list(filter_and_replace(file, fortran_to_replace))
|
|
|
|
# Defines the properties for the shells and corr_shells lists
|
|
shell_entries = ['atom', 'sort', 'l', 'dim']
|
|
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
|
|
|
# Reads k-point mesh generation option
|
|
kmesh_mode = int(file_content[0][0])
|
|
if kmesh_mode not in (-1, 0):
|
|
raise NotImplementedError(f'kmesh_mode {kmesh_mode} not supported')
|
|
|
|
if kmesh_mode >= 0:
|
|
# Read k-point mesh size from input
|
|
assert len(file_content[0]) == 4, 'specify k grid dimensions'
|
|
kmesh_size = [int(s) for s in file_content[0][1:]]
|
|
else:
|
|
assert len(file_content[0]) == 1, 'automatic k grid, no specifications needed'
|
|
kmesh_size = None
|
|
|
|
# Reads the total number of electrons per cell if not in bloch basis
|
|
# in bloch basis, this is later calculated from the partial occupations
|
|
assert len(file_content[1]) == 1
|
|
if file_content[1][0].lower() == 'none':
|
|
density_required = None
|
|
else:
|
|
density_required = float(file_content[1][0])
|
|
|
|
# Reads in number of corr. shells (e.g. Fe d, Ce f) in the unit cell
|
|
assert len(file_content[2]) == 1
|
|
n_corr_shells = int(file_content[2][0])
|
|
|
|
# Now reads the information about the correlated shells
|
|
corr_shells = []
|
|
for line in file_content[3:3+n_corr_shells]:
|
|
assert len(line) == len(corr_shell_entries)
|
|
corr_shells.append({name: int(val) for name, val in zip(corr_shell_entries, line)})
|
|
|
|
# Reads in the Fermi energy if there is an additional line after the correlated shells
|
|
if len(file_content) > 3+n_corr_shells:
|
|
assert len(file_content[3+n_corr_shells]) == 1
|
|
fermi_energy = float(file_content[3+n_corr_shells][0])
|
|
else:
|
|
fermi_energy = 0.
|
|
|
|
# Checks length of file
|
|
assert len(file_content) in (3+n_corr_shells, 4+n_corr_shells), 'input file contains additional lines'
|
|
|
|
# Copies corr_shells into shells
|
|
n_shells = n_corr_shells
|
|
shells = [{key: corr_shells[ish][key] for key in shell_entries}
|
|
for ish in range(n_shells)]
|
|
|
|
return (kmesh_mode, kmesh_size, density_required, n_corr_shells,
|
|
corr_shells, n_shells, shells, fermi_energy)
|
|
|
|
|
|
def check_and_adapt_for_soc(shells, corr_shells, bloch_basis, add_lambda):
|
|
"""
|
|
Checks compatibilities, modifies shells and corr_shells and sets variables
|
|
needed for spin-orbit coupled systems.
|
|
"""
|
|
# Determines if any shell requires SO
|
|
if any(sh['SO'] == 1 for sh in corr_shells):
|
|
SO = 1
|
|
SP = 1
|
|
mpi.report('Spin-orbit interaction turned on')
|
|
else:
|
|
SO = 0
|
|
SP = 0
|
|
|
|
# Only one block supported - either non-spin-polarized or spin-orbit coupled
|
|
assert SP == SO, 'Spin-polarized calculations not implemented'
|
|
|
|
# If adding a local SOC term, turn on SOC
|
|
if add_lambda:
|
|
assert all(sh['dim'] == 3 for sh in corr_shells), 'add_lambda only implemented for t2g shell'
|
|
assert SO == SP == 0, 'add_lambda not implemented for SO = SP = 1'
|
|
assert not bloch_basis, 'add_lambda not implemented for bloch_basis = True'
|
|
# now setting SO and SP to 1
|
|
SO = SP = 1
|
|
|
|
# this is more general
|
|
n_spin_blocks = SP + 1 - SO
|
|
assert n_spin_blocks > 0, 'Input error, if SO=1, SP must be 1.'
|
|
|
|
# Doubles dimension of all shells if SOC is on
|
|
if SO == 1:
|
|
for shell_list in [shells, corr_shells]:
|
|
for entry in shell_list:
|
|
entry['dim'] *= 2
|
|
if 'SO' in entry.keys() and add_lambda:
|
|
entry['SO'] = 1
|
|
|
|
return shells, corr_shells, SO, SP, n_spin_blocks
|
|
|
|
|
|
def read_wannier90_hr_data(wannier_seed):
|
|
"""
|
|
Method for reading the seedname_hr.dat file produced by Wannier90 (http://wannier.org).
|
|
If spin polarized, reads in the properties for a given spin
|
|
|
|
Parameters
|
|
----------
|
|
wannier_seed : string
|
|
seedname to read H(R) file produced by Wannier90, seedname_hr.dat
|
|
|
|
Returns
|
|
-------
|
|
n_r_spin : integer
|
|
number of R vectors found in the file
|
|
r_vector_spin : np.ndarray of integers
|
|
Miller indices of the R vectors
|
|
r_degeneracy_spin : np.ndarray of floats
|
|
weight of the R vectors
|
|
n_wannier_spin : integer
|
|
number of Wannier functions found
|
|
wannier_hr_spin : np.ndarray, # R points x # wannier funcs x # wannier funcs
|
|
<w_i|H(R)|w_j> = Hamilonian matrix elements in the Wannier basis
|
|
"""
|
|
hr_filename = wannier_seed + '_hr.dat'
|
|
with open(hr_filename, 'r') as file:
|
|
hr_data = file.readlines()
|
|
|
|
mpi.report('Reading {}: {}'.format(hr_filename, hr_data[0].strip()))
|
|
|
|
n_wannier_spin = int(hr_data[1])
|
|
n_r_spin = int(hr_data[2])
|
|
|
|
r_vector_spin = np.zeros((n_r_spin, 3), dtype=int)
|
|
r_degeneracy_spin = np.zeros(n_r_spin, dtype=int)
|
|
wannier_hr_spin = np.zeros((n_r_spin, n_wannier_spin, n_wannier_spin), dtype=complex)
|
|
|
|
currpos = 2
|
|
ir = 0
|
|
# read the degeneracy of the R vectors (needed for the Fourier
|
|
# transform)
|
|
while ir < n_r_spin:
|
|
currpos += 1
|
|
for x in hr_data[currpos].split():
|
|
if ir >= n_r_spin:
|
|
raise IndexError('wrong number of R vectors??')
|
|
r_degeneracy_spin[ir] = int(x)
|
|
ir += 1
|
|
# for each direct lattice vector R read the block of the
|
|
# Hamiltonian H(R)
|
|
for ir, jj, ii in product(range(n_r_spin), range(n_wannier_spin), range(n_wannier_spin)):
|
|
# advance one line, split the line into tokens
|
|
currpos += 1
|
|
cline = hr_data[currpos].split()
|
|
# check if the orbital indexes in the file make sense
|
|
assert int(cline[3]) == ii + 1 and int(cline[4]) == jj + 1, 'Inconsistent indices for R vector n. {}'.format(ir)
|
|
rcurr = np.array([int(cline[0]), int(cline[1]), int(cline[2])])
|
|
if ii == 0 and jj == 0:
|
|
r_vector_spin[ir] = rcurr
|
|
rprev = rcurr
|
|
else:
|
|
# check if the vector indices are consistent
|
|
assert np.all(rcurr == rprev), 'Inconsistent indices for R vector n. {}'.format(ir)
|
|
|
|
# fill wannier_hr_spin with the matrix elements of the Hamiltonian
|
|
wannier_hr_spin[ir, ii, jj] = complex(float(cline[5]), float(cline[6]))
|
|
|
|
return n_r_spin, r_vector_spin, r_degeneracy_spin, n_wannier_spin, wannier_hr_spin
|
|
|
|
|
|
def read_wannier90_blochbasis_data(wannier_seed, n_wannier_spin):
|
|
"""
|
|
Method for reading the files needed in the bloch_basis: seedname_u.mat,
|
|
seedname.eig and potentially seedname_u_dis.mat.
|
|
|
|
Parameters
|
|
----------
|
|
wannier_seed : string
|
|
seedname to Wannier90 output
|
|
|
|
Returns
|
|
-------
|
|
u_mat_spin : np.ndarray
|
|
U_mn^k = unitary matrix elements which mix the Kohn-Sham states
|
|
udis_mat_spin : np.ndarray
|
|
U^dis(k) = rectangular matrix for entangled bands
|
|
ks_eigenvals_spin : np.ndarray
|
|
\epsilon_nk = Kohn-Sham eigenvalues (in eV) needed for entangled bands
|
|
k_mesh : np.ndarray
|
|
The k mesh read from the seedname_u.mat file to ensure consistency
|
|
"""
|
|
mpi.report('Writing h5 archive in projector formalism: H(k) defined in KS Bloch basis')
|
|
|
|
# ------------- Reads seedname_u.mat
|
|
# first, read u matrices from 'seedname_u.mat'
|
|
u_filename = wannier_seed + '_u.mat'
|
|
with open(u_filename,'r') as u_file:
|
|
u_data = u_file.readlines()
|
|
# reads number of kpoints and number of wannier functions
|
|
n_k, n_wannier_spin_u, _ = map(int, u_data[1].split())
|
|
assert n_wannier_spin_u == n_wannier_spin, '#WFs must be identical for *_u.mat and *_hr.dat'
|
|
mpi.report('Reading {}: {}'.format(u_filename, u_data[0].strip()))
|
|
|
|
# Reads k mesh from all lines with 3 floats
|
|
k_mesh = np.loadtxt((line for line in u_data if line.count('.') == 3))
|
|
assert k_mesh.shape == (n_k, 3)
|
|
# Reads u matrices from all lines with 2 floats
|
|
u_mat_spin = np.loadtxt((line for line in u_data if line.count('.') == 2))
|
|
assert u_mat_spin.shape == (n_k*n_wannier_spin*n_wannier_spin, 2)
|
|
|
|
# first, get the input for u_mat_spin
|
|
u_mat_spin = u_mat_spin[:, 0] + 1j * u_mat_spin[:, 1]
|
|
u_mat_spin = u_mat_spin.reshape((n_k, n_wannier_spin, n_wannier_spin)).transpose((0, 2, 1))
|
|
|
|
# ------------- Reading seedname.eig
|
|
band_filename = wannier_seed + '.eig'
|
|
# read Kohn-Sham eigenvalues from 'seedname.eig'
|
|
mpi.report('Reading {}'.format(band_filename))
|
|
band_data = np.loadtxt(band_filename, usecols=2)
|
|
ks_eigenvals_spin = band_data.reshape(n_k, -1)
|
|
|
|
# ------------- Reading seedname_u_dis.mat
|
|
udis_filename = wannier_seed + '_u_dis.mat'
|
|
disentangle = os.path.isfile(udis_filename)
|
|
if disentangle:
|
|
with open(udis_filename,'r') as udis_file:
|
|
udis_data = udis_file.readlines()
|
|
else:
|
|
mpi.report('WARNING: File {} missing.'.format(udis_filename))
|
|
mpi.report('Assuming an isolated set of bands. Check if this is what you want!')
|
|
|
|
if disentangle:
|
|
# if disentangle the window is needed
|
|
wout_filename = wannier_seed + '.wout'
|
|
# reads number of kpoints, number of wannier functions and bands
|
|
num_k_udis, n_wannier_spin_udis, num_ks_bands = map(int, udis_data[1].split())
|
|
|
|
assert num_k_udis == n_k, '#k points must be identical for *.inp and *_u_dis.mat'
|
|
assert n_wannier_spin_udis == n_wannier_spin, '#WFs must be identical for *_u.mat and *_hr.dat'
|
|
|
|
mpi.report('Reading {}: {}, '.format(udis_filename, udis_data[0].strip()))
|
|
udis_data = np.loadtxt(udis_data, usecols=(0, 1), skiprows=2)
|
|
|
|
# read disentanglement window from 'seedname.wout'
|
|
with open(wout_filename) as wout_file:
|
|
for line in wout_file:
|
|
if 'Outer:' in line:
|
|
content = line.split()
|
|
index = content.index('Outer:') + 1
|
|
dis_window_min = float(content[index])
|
|
dis_window_max = float(content[index+2])
|
|
break
|
|
mpi.report('and {} for disentanglement energy window.'.format(wout_filename))
|
|
else:
|
|
num_ks_bands = n_wannier_spin
|
|
|
|
# now, check what is needed in the case of disentanglement:
|
|
# The file seedname_u_dis.mat contains only the bands inside the window
|
|
# and then fills the rest up with zeros. Therefore, we need to put the
|
|
# entries from udis_data in the correct position in udis_mat_spin, i.e.
|
|
# shifting by the number of bands below dis_window_min
|
|
# reshape band_data
|
|
assert ks_eigenvals_spin.shape[1] == num_ks_bands, '.eig and u_dis.mat data inconsistent'
|
|
|
|
if disentangle:
|
|
# Determine which bands are inside the band window
|
|
inside_window = np.logical_and(ks_eigenvals_spin >= dis_window_min,
|
|
ks_eigenvals_spin <= dis_window_max)
|
|
n_inside_per_k = np.sum(inside_window, axis=1)
|
|
|
|
# Reformats udis_data as complex, without header
|
|
udis_data = udis_data[:, 0] + 1j * udis_data[:, 1]
|
|
udis_data = udis_data.reshape((n_k, n_wannier_spin*num_ks_bands+1))[:, 1:]
|
|
udis_data = udis_data.reshape((n_k, n_wannier_spin, num_ks_bands))
|
|
|
|
#initiate U disentanglement matrices and fill from file 'seedname_u_dis.mat'
|
|
udis_mat_spin = np.zeros([n_k, num_ks_bands, n_wannier_spin], dtype=complex)
|
|
for ik in range(n_k):
|
|
udis_mat_spin[ik, inside_window[ik]] = udis_data[ik, :, :n_inside_per_k[ik]].T
|
|
if not np.allclose(udis_data[ik, :, n_inside_per_k[ik]:], 0):
|
|
raise ValueError('This error could come from rounding of the band window in the seedname.wout. '
|
|
+ 'Never use default outer window but something wider and '
|
|
+ 'check that your outer window is not close to any band energy.')
|
|
else:
|
|
# no disentanglement; fill udis_mat_spin with identity
|
|
udis_mat_spin = np.array([np.identity(n_wannier_spin, dtype=complex)] * n_k)
|
|
|
|
# return the data into variables
|
|
return u_mat_spin, udis_mat_spin, ks_eigenvals_spin, k_mesh
|
|
|
|
|
|
def read_all_wannier90_data(n_spin_blocks, dim_corr_shells, w90_seed, add_lambda, bloch_basis):
|
|
"""
|
|
Reads in all the wannier90 data using the functions read_wannier90_hr_data
|
|
and read_wannier90_blochbasis_data. Reads in everything for each spin
|
|
channel (into the variables marked with _spin) and runs consistency checks
|
|
on them or combines them.
|
|
|
|
Returns
|
|
-------
|
|
wannier_hr : np.ndarray[n_spin_blocks, n_r, n_wannier, n_wannier] of complex
|
|
Hamilonian matrix elements in the Wannier basis
|
|
u_total : np.ndarray[n_spin_blocks, n_k, n_wannier, n_bands] of complex
|
|
The projection matrix as read from wannier. None if not bloch_basis
|
|
ks_eigenvals : np.ndarray[n_spin_blocks, n_k, n_bands] of float
|
|
The KS eigenvalues of the bands per k point. None if not bloch_basis
|
|
r_vector : np.ndarray[n_r, 3] of int
|
|
The r vectors of the wannier Hamiltonian
|
|
r_degeneracy : np.ndarray[n_r] of int
|
|
The degeneracy per r point
|
|
n_wannier: int
|
|
Number of wannier functions
|
|
n_bands : int
|
|
Number of bands
|
|
k_mesh_from_umat : np.ndarray[n_k, 3] of float
|
|
The k points as used in wannier for consistency. None if not bloch_basis
|
|
"""
|
|
spin_w90name = ['_up', '_down']
|
|
wannier_hr = []
|
|
if bloch_basis:
|
|
u_mat = []
|
|
udis_mat = []
|
|
ks_eigenvals = []
|
|
|
|
for isp in range(n_spin_blocks):
|
|
# build filename according to wannier90 conventions
|
|
if n_spin_blocks == 2:
|
|
mpi.report('Reading information for spin component n. {}'.format(isp))
|
|
file_seed = w90_seed + spin_w90name[isp]
|
|
else:
|
|
file_seed = w90_seed
|
|
# now grab the data from the wannier90 output files
|
|
mpi.report('\nThe Hamiltonian in MLWF basis is extracted from {} files'.format(file_seed))
|
|
|
|
w90_hr_results = None
|
|
if mpi.is_master_node():
|
|
w90_hr_results = read_wannier90_hr_data(file_seed)
|
|
n_r_spin, r_vector_spin, r_degeneracy_spin, n_wannier_spin, wannier_hr_spin = mpi.bcast(w90_hr_results)
|
|
|
|
if bloch_basis:
|
|
w90_results = None
|
|
if mpi.is_master_node():
|
|
w90_results = read_wannier90_blochbasis_data(file_seed, n_wannier_spin)
|
|
# number of R vectors, their indices, their degeneracy, number of WFs, H(R),
|
|
# U matrices, U(dis) matrices, band energies, k_mesh of U matrices
|
|
u_mat_spin, udis_mat_spin, ks_eigenvals_spin, k_mesh_from_umat = mpi.bcast(w90_results)
|
|
|
|
mpi.report('\n... done: {} R vectors, {} WFs found'.format(n_r_spin, n_wannier_spin))
|
|
|
|
if add_lambda:
|
|
mpi.report('Adding local spin-orbit term to Hamiltonian (assuming dxz, dyz, dxy as orbital order)')
|
|
# doubling number of wannier functions
|
|
n_wannier_spin *= 2
|
|
|
|
if isp == 0:
|
|
# set the R vectors and their degeneracy
|
|
n_r = n_r_spin
|
|
r_vector = r_vector_spin
|
|
r_degeneracy = r_degeneracy_spin
|
|
n_wannier = n_wannier_spin
|
|
|
|
# check that the total number of WFs makes sense
|
|
if n_wannier < dim_corr_shells:
|
|
mpi.report('ERROR: number of WFs in the file smaller than number of correlated orbitals!')
|
|
elif n_wannier > dim_corr_shells:
|
|
# NOTE: correlated shells must appear before uncorrelated
|
|
# ones inside the file
|
|
mpi.report('Number of WFs larger than correlated orbitals:',
|
|
'WFs from {} to {} treated as uncorrelated'.format(dim_corr_shells + 1, n_wannier))
|
|
else:
|
|
mpi.report('Number of WFs equal to number of correlated orbitals')
|
|
|
|
# we assume spin up and spin down always have same total number
|
|
# of WFs
|
|
# get second dimension of udis_mat_spin which corresponds to number of bands in window
|
|
if bloch_basis:
|
|
n_bands = udis_mat_spin.shape[1]
|
|
if add_lambda:
|
|
n_bands *= 2
|
|
else:
|
|
n_bands = n_wannier
|
|
else:
|
|
# consistency check between the _up and _down file contents
|
|
assert n_r_spin == n_r, 'Different number of R vectors for spin-up/spin-down!'
|
|
assert n_wannier_spin == n_wannier, 'Different number of WFs for spin-up/spin-down!'
|
|
assert np.all(r_vector_spin == r_vector), 'R vectors different between spin components'
|
|
assert np.all(r_degeneracy_spin == r_degeneracy), 'R vec. degeneracy different between spin components'
|
|
|
|
wannier_hr.append(wannier_hr_spin)
|
|
if bloch_basis:
|
|
u_mat.append(u_mat_spin)
|
|
udis_mat.append(udis_mat_spin)
|
|
ks_eigenvals.append(ks_eigenvals_spin)
|
|
|
|
if bloch_basis:
|
|
# Definition of projectors in Wannier and Triqs different by Hermitian conjugate
|
|
u_total = np.einsum('skab,skbc->skca', udis_mat, u_mat).conj()
|
|
ks_eigenvals = np.array(ks_eigenvals)
|
|
else:
|
|
u_total = None
|
|
ks_eigenvals = None
|
|
k_mesh_from_umat = None
|
|
wannier_hr = np.array(wannier_hr)
|
|
|
|
return (wannier_hr, u_total, ks_eigenvals, r_vector, r_degeneracy,
|
|
n_wannier, n_bands, k_mesh_from_umat)
|
|
|
|
|
|
def build_kmesh(kmesh_size, kmesh_mode=0):
|
|
"""
|
|
Method for the generation of the k-point mesh. Right now it only supports
|
|
the option for generating a full grid containing k=0,0,0.
|
|
|
|
Parameters
|
|
----------
|
|
kmesh_size : list of 3 integers
|
|
the dimensions of the mesh
|
|
kmesh_mode : integer
|
|
mesh generation mode (right now, only full grid available)
|
|
|
|
Returns
|
|
-------
|
|
n_k : integer
|
|
total number of k-points in the mesh
|
|
kpts : np.ndarray[n_k, 3] of floats
|
|
the coordinates of all k-points
|
|
kpt_weights : np.ndarray[n_k] of floats
|
|
the weight of each k-point
|
|
"""
|
|
if kmesh_mode != 0:
|
|
raise ValueError('Mesh generation mode not supported: {}'.format(kmesh_mode))
|
|
|
|
assert len(kmesh_size) == 3
|
|
|
|
# a regular mesh including Gamma point
|
|
# total number of k-points
|
|
n_k = np.prod(kmesh_size)
|
|
kpts = np.array(list(product(range(kmesh_size[0]), range(kmesh_size[1]), range(kmesh_size[2]))))
|
|
kpts = kpts / np.array(kmesh_size)
|
|
# weight is equal for all k-points because wannier90 uses uniform grid on whole BZ
|
|
# (normalization is always 1 and takes into account spin degeneracy)
|
|
kpt_weights = np.full(n_k, 1/n_k)
|
|
|
|
return n_k, kpts, kpt_weights
|
|
|
|
|
|
def read_misc_input(w90_seed, n_spin_blocks, n_k):
|
|
"""
|
|
Reads input from DFT code calculations to get occupations, the band window,
|
|
the Fermi energy and the basis for the k points.
|
|
|
|
Parameters
|
|
----------
|
|
w90_seed : string
|
|
seed of wannier90 calculations
|
|
n_spin_blocks : int
|
|
SP + 1 - SO
|
|
n_k : int
|
|
Number of k points
|
|
|
|
Returns
|
|
-------
|
|
fermi_weights : np.ndarray[n_k, n_spin_blocks, n_bands]
|
|
occupations from DFT calculation
|
|
band_window : np.ndarray[n_k, n_spin_blocks, n_bands]
|
|
band indices of correlated subspace
|
|
fermi_energy : float
|
|
the DFT Kohn-Sham Fermi energy
|
|
kpt_basis: np.ndarray[3, 3]
|
|
the basis vectors in reciprocal space
|
|
"""
|
|
w90_seed_dir = os.path.dirname(w90_seed)
|
|
nscf_filename = w90_seed + '.nscf.out'
|
|
nnkp_filename = w90_seed + '.nnkp'
|
|
locproj_filename = os.path.join(w90_seed_dir, 'LOCPROJ')
|
|
outcar_filename = os.path.join(w90_seed_dir, 'OUTCAR')
|
|
|
|
if os.path.isfile(nscf_filename):
|
|
read_from = 'qe'
|
|
mpi.report('Reading DFT band occupations from Quantum Espresso output {}'.format(nscf_filename))
|
|
elif os.path.isfile(locproj_filename) and os.path.isfile(outcar_filename):
|
|
read_from = 'vasp'
|
|
mpi.report('Reading DFT band occupations from Vasp output {}'.format(locproj_filename))
|
|
else:
|
|
raise IOError('seedname.nscf.out or LOCPROJ and OUTCAR required in bloch_basis mode')
|
|
|
|
assert n_spin_blocks == 1, 'spin-polarized not implemented'
|
|
assert read_from in ('qe', 'vasp')
|
|
|
|
occupations = []
|
|
reading_kpt_basis = False
|
|
lines_read_kpt_basis = 0
|
|
kpt_basis = np.zeros((3, 3))
|
|
|
|
if read_from == 'qe':
|
|
occupations = []
|
|
with open(nscf_filename,'r') as out_file:
|
|
out_data = out_file.readlines()
|
|
# Reads number of Kohn-Sham states and Fermi energy
|
|
for line in out_data:
|
|
if 'number of Kohn-Sham states' in line:
|
|
n_ks = int(line.split()[-1])
|
|
elif 'Fermi energy' in line:
|
|
fermi_energy = float(line.split()[-2])
|
|
elif 'reciprocal axes' in line:
|
|
reading_kpt_basis = True
|
|
continue
|
|
elif reading_kpt_basis and lines_read_kpt_basis < 3:
|
|
kpt_basis[lines_read_kpt_basis, :] = line.split()[3:6]
|
|
lines_read_kpt_basis +=1
|
|
|
|
# get occupations
|
|
for ct, line in enumerate(out_data):
|
|
if line.strip() == 'End of band structure calculation':
|
|
break
|
|
|
|
assert 'k =' in out_data[ct + 2], 'Cannot read occupations. Set verbosity = "high" in {}'.format(nscf_filename)
|
|
out_data = out_data[ct+2:]
|
|
|
|
# block size of eigenvalues + occupations per k-point
|
|
n_block = int(2*np.ceil(n_ks/8)+5)
|
|
|
|
for ik in range(n_k):
|
|
# get data
|
|
k_block = [line.split() for line in out_data[ik*n_block+2:ik*n_block+n_block-1]]
|
|
# second half corresponds to occupations
|
|
occs = k_block[int(len(k_block)/2)+1:]
|
|
flattened_occs = [float(item) for sublist in occs for item in sublist]
|
|
occupations.append(flattened_occs)
|
|
else:
|
|
# Reads LOCPROJ
|
|
with open(locproj_filename, 'r') as file:
|
|
header = file.readline()
|
|
n_ks = int(header.split()[2])
|
|
fermi_energy = float(header.split()[4])
|
|
|
|
occupations = np.loadtxt((line for line in file if 'orbital' in line), usecols=5)
|
|
occupations = occupations.reshape((n_k, n_ks))
|
|
|
|
# Read reciprocal vectors from OUTCAR
|
|
with open(outcar_filename, 'r') as file:
|
|
for line in file:
|
|
if 'reciprocal lattice vectors' in line:
|
|
reading_kpt_basis = True
|
|
elif reading_kpt_basis:
|
|
kpt_basis[lines_read_kpt_basis, :] = line.split()[3:6]
|
|
lines_read_kpt_basis += 1
|
|
if lines_read_kpt_basis == 3:
|
|
break
|
|
|
|
# assume that all bands contribute, then remove from exclude_bands; python indexing
|
|
corr_bands = list(range(n_ks))
|
|
# read exclude_bands from 'seedname.nnkp' file
|
|
with open(nnkp_filename, 'r') as nnkp_file:
|
|
read = False
|
|
skip = False
|
|
for line in nnkp_file:
|
|
if line.strip() == 'begin exclude_bands':
|
|
read = True
|
|
# skip one more line that contains total number of excluded bands
|
|
skip = True
|
|
continue
|
|
if line.strip() == 'end exclude_bands':
|
|
read = False
|
|
continue
|
|
if skip:
|
|
skip = False
|
|
continue
|
|
if read:
|
|
# wannier index -1
|
|
corr_bands.remove(int(line)-1)
|
|
|
|
# For now, it is only supported to exclude the lowest and highest bands
|
|
# If bands in the middle are supposed to be excluded, this doesn't work with the band_window
|
|
# We'd need to manually add rows of zeros to the projectors
|
|
if np.any(np.diff(corr_bands) != 1):
|
|
raise NotImplementedError('Can only exclude the lowest or highest bands')
|
|
band_window = np.array([[(min(corr_bands), max(corr_bands))]*n_k]*n_spin_blocks)
|
|
|
|
included_occupations = np.array(occupations)[:, corr_bands]
|
|
# Adds spin dimension without changing the array
|
|
f_weights = included_occupations.reshape(included_occupations.shape[0], 1,
|
|
included_occupations.shape[1])
|
|
|
|
return f_weights, band_window, fermi_energy, kpt_basis
|
|
|
|
|
|
def reorder_orbital_and_spin(nwfs, wannier_hr, u_total):
|
|
"""
|
|
Changes order from VASP5 + wannier90 (first all up spin wannier orbitals,
|
|
then all down spin) to usual order (every up orbital is followed directly
|
|
by the corresponding down orbital). The order between orbital degrees of
|
|
freedom is not changed.
|
|
|
|
Returns
|
|
-------
|
|
wannier_hr : np.ndarray
|
|
The re-ordered wannier real-space Hamiltonian.
|
|
u_total : list of np.ndarray
|
|
The re-ordered projection matrix.
|
|
"""
|
|
reorder = [i+shift for i in range(nwfs//2) for shift in (0, nwfs//2)]
|
|
mpi.report('Reordering the orbitals because of SOC, new order:', reorder)
|
|
|
|
wannier_hr = wannier_hr[:, :, reorder][:, :, :, reorder]
|
|
if u_total is not None:
|
|
u_total = u_total[:, :, reorder, :]
|
|
|
|
return wannier_hr, u_total
|
|
|
|
|
|
def generate_local_so_matrix_t2g(add_lambda, n_corr_shells, nwfs):
|
|
"""
|
|
Adds local spin-orbit interaction term to the t2g subspace. Orbital order
|
|
is assumed to be the wannier90/triqs order xz_up, xz_dn, yz_up, yz_dn,
|
|
xy_up, xy_dn.
|
|
Parameters are defined as add_lambda = [lambda_x, lambda_y, lambda_z],
|
|
representative of the orbital coupling terms perpendicular to [x, y, z],
|
|
i.e., [d_yz, d_xz, d_xy], respectively.
|
|
|
|
Returns
|
|
-------
|
|
lambda_matrix : np.ndarray[6, 6] of complex
|
|
local spin-orbit term to be added to H(0)
|
|
"""
|
|
lambda_x, lambda_y, lambda_z = add_lambda
|
|
|
|
lambda_matrix = np.zeros((nwfs, nwfs), dtype=complex)
|
|
|
|
for icrsh in range(n_corr_shells):
|
|
ind = 6*icrsh
|
|
lambda_matrix[ind , ind+2] = -1j*lambda_z/2.0
|
|
lambda_matrix[ind , ind+5] = 1j*lambda_x/2.0
|
|
lambda_matrix[ind+2, ind+5] = -lambda_y/2.0
|
|
lambda_matrix[ind+4, ind+1] = -1j*lambda_x/2.0
|
|
lambda_matrix[ind+4, ind+3] = lambda_y/2.0
|
|
lambda_matrix[ind+1, ind+3] = 1j*lambda_z/2.0
|
|
lambda_matrix += lambda_matrix.T.conj()
|
|
|
|
return lambda_matrix
|
|
|
|
|
|
def check_hr(wannier_hr, w90_zero, r_zero_index):
|
|
"""
|
|
Checks of the real-space Hamiltonian. Prints a warning if Hamiltonian is
|
|
not real and raises a ValueError if Hamiltonian at R=0 is not Hermitian.
|
|
"""
|
|
# Tests if Hamiltonian is real
|
|
imag_components_hr = np.isclose(np.imag(wannier_hr), 0, atol=w90_zero, rtol=0)
|
|
index_imag_components = np.nonzero(np.logical_not(np.all(imag_components_hr, axis=(2, 3))))
|
|
for ind in np.transpose(index_imag_components):
|
|
mpi.report('H(R) has large complex components at R {}'.format(ind[1])
|
|
+ ' and spin component {}'.format(ind[0]))
|
|
|
|
# Checks if Hamiltonian at R=0 is hermitian
|
|
wannier_hr0 = wannier_hr[:, r_zero_index]
|
|
if not np.allclose(wannier_hr0.transpose((0, 2, 1)).conj(), wannier_hr0, atol=w90_zero, rtol=0):
|
|
raise ValueError('H(R=0) matrix is not Hermitian')
|
|
|
|
|
|
def find_rot_mat(n_corr_shells, corr_shells, shells_map, wannier_hr0,
|
|
rot_mat_type, w90_zero, n_spin_blocks):
|
|
"""
|
|
Method for finding the matrices that bring from local to global coordinate
|
|
systems, based on the eigenvalues of H(R=0).
|
|
|
|
Returns
|
|
-------
|
|
rot_mat : list of list of np.ndarray[dim, dim] of complex
|
|
Rotation matrix for each of the shell. None if construction failed
|
|
"""
|
|
rot_mat_full = [None] * n_spin_blocks
|
|
|
|
for isp in range(n_spin_blocks):
|
|
# initialize the rotation matrices to identities
|
|
rot_mat = [np.identity(corr_shells[icrsh]['dim'], dtype=complex)
|
|
for icrsh in range(n_corr_shells)]
|
|
|
|
# Method none only physical if no equivalent impurities, otherwise
|
|
# potentially useful for debugging
|
|
# Returns identity matrices as rotation matrices
|
|
if rot_mat_type == 'none':
|
|
mpi.report('WARNING: using the method "none" leads to physically wrong results '
|
|
+ 'if there is a mapping of multiple correlated shells on one impurity.')
|
|
rot_mat_full[isp] = rot_mat
|
|
continue
|
|
|
|
# TODO: better handling of degenerate eigenvalue case
|
|
hr0_list = [None] * n_corr_shells
|
|
eigval_lst = [None] * n_corr_shells
|
|
eigvec_lst = [None] * n_corr_shells
|
|
ind = 0
|
|
for icrsh in range(n_corr_shells):
|
|
dim = corr_shells[icrsh]['dim']
|
|
# Saves the sub-block of H(0) corresponding to this shell
|
|
hr0_list[icrsh] = np.zeros((dim, dim), dtype=complex)
|
|
hr0_list[icrsh] = wannier_hr0[isp, ind:ind+dim, ind:ind+dim]
|
|
ind += dim
|
|
# Diagonalizes the sub-block for this shell
|
|
eigval_lst[icrsh], eigvec_lst[icrsh] = np.linalg.eigh(hr0_list[icrsh])
|
|
|
|
# Checks for degenerate eigenvalues if there are equivalent shells
|
|
# TODO: better handling of degenerate eigenvalue case
|
|
for iineq in set(shells_map):
|
|
if shells_map.count(iineq) > 1:
|
|
icrsh = shells_map.index(iineq)
|
|
dim = corr_shells[icrsh]['dim']
|
|
if any(abs(eigval_lst[icrsh][j] - eigval_lst[icrsh][i]) < w90_zero
|
|
for i in range(dim) for j in range(i+1, dim)):
|
|
mpi.report('WARNING: degenerate eigenvalue of H(0) detected for shell {}: '.format(icrsh) +
|
|
'global-to-local transformation might not work!')
|
|
|
|
for icrsh in range(n_corr_shells):
|
|
# build rotation matrices either...
|
|
if rot_mat_type == 'hloc_diag':
|
|
# using the unitary transformations that diagonalize H(0)
|
|
rot_mat[icrsh] = eigvec_lst[icrsh]
|
|
elif rot_mat_type == 'wannier':
|
|
# or by combining those transformations (i.e. for each group,
|
|
# the representative site is chosen as the global frame of reference)
|
|
rot_mat[icrsh] = np.dot(eigvec_lst[icrsh], eigvec_lst[shells_map[icrsh]].T.conj())
|
|
|
|
# check that eigenvalues are the same (within accuracy) for
|
|
# equivalent shells
|
|
if not np.allclose(eigval_lst[icrsh], eigval_lst[shells_map[icrsh]], atol=w90_zero, rtol=0):
|
|
mpi.report(f'ERROR: eigenvalue mismatch between equivalent shells! {icrsh}, {shells_map[icrsh]}')
|
|
eigval_diff = eigval_lst[icrsh] - eigval_lst[shells_map[icrsh]]
|
|
mpi.report(f'Eigenvalue difference {eigval_diff}, but threshold set to {w90_zero:.1e}.')
|
|
mpi.report('Consider lowering threshold if you are certain the mapping is correct.')
|
|
return None
|
|
|
|
# check that rotation matrices are unitary
|
|
# dim = number of orbitals in this shell
|
|
dim = corr_shells[icrsh]['dim']
|
|
tmp_mat = np.dot(rot_mat[icrsh], rot_mat[icrsh].conj().T)
|
|
if not np.allclose(tmp_mat, np.identity(dim), atol=w90_zero, rtol=0):
|
|
mpi.report(f'ERROR: rot_mat for shell {icrsh:d} is not unitary!')
|
|
return None
|
|
|
|
# check that rotation matrices map equivalent H(0) blocks as they should
|
|
# (assuming representative shell as global frame of reference)
|
|
if rot_mat_type == 'hloc_diag':
|
|
tmp_mat = np.dot(rot_mat[icrsh], rot_mat[shells_map[icrsh]].conj().T)
|
|
elif rot_mat_type == 'wannier':
|
|
tmp_mat = rot_mat[icrsh]
|
|
tmp_mat = np.dot(tmp_mat.conj().T, np.dot(hr0_list[icrsh], tmp_mat))
|
|
if not np.allclose(tmp_mat, hr0_list[shells_map[icrsh]], atol=w90_zero, rtol=0):
|
|
mpi.report(f'ERROR: rot_mat does not map H(0) correctly! {icrsh:d}')
|
|
return None
|
|
|
|
rot_mat_full[isp] = rot_mat
|
|
|
|
# Equality check between rot_mats for different spins
|
|
if n_spin_blocks == 2 and not all(np.allclose(r0, r1, atol=w90_zero, rtol=0)
|
|
for r0, r1 in zip(rot_mat_full[0], rot_mat_full[1])):
|
|
mpi.report('Rotations between spin components do not match!')
|
|
return None
|
|
|
|
return rot_mat_full[0]
|
|
|
|
|
|
def fourier_transform_hamiltonian(wannier_hr, r_vector, r_degeneracy, kpts):
|
|
"""
|
|
Method for obtaining H(k) from H(R) via Fourier transform.
|
|
|
|
Parameters
|
|
----------
|
|
wannier_hr : np.ndarray[n_spin_blocks, n_r, n_wannier, n_wannier] of complex
|
|
Hamiltonian H(R) in Wannier basis
|
|
r_vector : np.ndarray[n_r, 3] of float
|
|
R vectors on which wannier real-space Hamiltonian is defined
|
|
r_degeneracy : np.ndarray[n_r] of int
|
|
Degeneracy of R vector
|
|
kpts : np.ndarray[n_k, 3] of float
|
|
k points where the Fourier transform is executed on
|
|
|
|
Returns
|
|
-------
|
|
wannier_hk : np.ndarray[n_spin_blocks, n_k, n_wannier, n_wannier]
|
|
Transformed Hamiltonian H(k) in Wannier basis
|
|
"""
|
|
factors = np.exp(2j * np.pi * np.matmul(r_vector, kpts.T)) / r_degeneracy.reshape(-1, 1)
|
|
wannier_hk = np.einsum('rk,srab->skab', factors, wannier_hr)
|
|
|
|
return wannier_hk
|
|
|
|
|
|
def check_bloch_basis_hk(n_corr_shells, corr_shells, n_k, n_spin_blocks, n_bands,
|
|
proj_mat, dim_corr_shells, wannier_hk, hopping):
|
|
"""
|
|
Check of the reciprocal-space Hamiltonian in bloch basis. Prints warning if
|
|
the local downfolded Hamiltonian with the projector method does not
|
|
correspond to the W90 result.
|
|
"""
|
|
proj_mat_flattened = np.zeros((n_k, n_spin_blocks, dim_corr_shells, n_bands), dtype=complex)
|
|
iorb = 0
|
|
for icrsh in range(n_corr_shells):
|
|
dim = corr_shells[icrsh]['dim']
|
|
proj_mat_flattened[:, :, iorb:iorb+dim, :] = proj_mat[:, :, icrsh, :dim, :]
|
|
iorb += dim
|
|
|
|
downfolded_ham = np.einsum('ksab,ksbc,ksdc->skad', proj_mat_flattened, hopping,
|
|
proj_mat_flattened.conj())
|
|
if dim_corr_shells < n_bands:
|
|
wannier_ham_corr = wannier_hk[:, :, :dim_corr_shells, :dim_corr_shells]
|
|
else:
|
|
wannier_ham_corr = wannier_hk
|
|
|
|
hks_are_equal = np.isclose(downfolded_ham, wannier_ham_corr, atol=1e-4, rtol=0)
|
|
if not np.all(hks_are_equal):
|
|
index_difference = np.nonzero(np.logical_not(np.all(hks_are_equal, axis=2)))
|
|
isp, ik = np.transpose(index_difference)[0]
|
|
mpi.report('WARNING: mismatch between downfolded Hamiltonian and Fourier transformed '
|
|
+ 'H(R). First occurred at kpt {} and spin {}:'.format(ik, isp))
|
|
|
|
with np.printoptions(formatter={'complexfloat': '{:+.4f}'.format}):
|
|
mpi.report('Downfolded Hamiltonian, P H_eig P')
|
|
mpi.report(downfolded_ham[isp, ik])
|
|
mpi.report('\nWannier Hamiltonian, Fourier(H(r))')
|
|
mpi.report(wannier_ham_corr[isp, ik])
|
|
|
|
|
|
def check_wannier_basis_hk(hopping, dim_corr_shells):
|
|
"""
|
|
Check of the reciprocal-space Hamiltonian in wannier basis. Raises error
|
|
if imaginary diagonal elements are not zero, because otherwise there can be
|
|
instabilties in lattice Gf.
|
|
"""
|
|
#TODO: do we want to apply this on bloch_basis downfolded Hamiltonian as well?
|
|
diag_iterator = range(dim_corr_shells)
|
|
hk_has_imag_diag = np.isclose(hopping[:, :, diag_iterator, diag_iterator].imag, 0, atol=1e-10, rtol=0)
|
|
|
|
if not np.all(hk_has_imag_diag):
|
|
index_imag = np.nonzero(np.logical_not(np.all(hk_has_imag_diag, axis=2)))
|
|
ik, isp = np.transpose(index_imag)[0]
|
|
mpi.report('ERROR: Wannier Hamiltonian has complex diagonal entries. '
|
|
+ 'First occurred at kpt {} and spin {}:'.format(ik, isp))
|
|
with np.printoptions(formatter={'float': '{:+.10f}'.format}):
|
|
mpi.report('\nWannier Hamiltonian diagonal, Fourier(H(r)), imaginary')
|
|
mpi.report(hopping[ik, isp, diag_iterator, diag_iterator].imag)
|
|
raise ValueError
|