mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 19:53:45 +01:00
da7e7ec971
-> code was previously assuming mesh with only positive, fermionic matsubara freqs -> changed wn_min to n_min (was misleading, since it was an index, not a frequency) / same for <-> max -> changed doc accordingly
108 lines
6.2 KiB
ReStructuredText
108 lines
6.2 KiB
ReStructuredText
.. highlight:: c
|
|
|
|
.. _gf_tail:
|
|
|
|
High frequency tail
|
|
===========================
|
|
|
|
Definition
|
|
----------------------
|
|
|
|
The tail of a Green's function is defined as the behavior of the Green's
|
|
function :math:`G` at large Matsubara frequencies, namely
|
|
|
|
.. math:: \mathbf{G}(i\omega_n) \stackrel {=}{\infty} \mathbf{a}_{-1}\cdot i\omega_n + \mathbf{a}_{0} +\mathbf{a}_{1}\cdot \frac{1}{ i\omega_n} +\mathbf{a}_{2}\cdot \frac{1}{ (i\omega_n)^2} +\dots
|
|
|
|
Generically, the tail is parametrized by matrix-valued coefficients
|
|
:math:`\mathbf{a}_{i}` (of size :math:`N_1\times N_2`\ )
|
|
|
|
.. math:: t = \sum_{i=o_{min}}^{o_{max}} \mathbf{a}_i (i\omega_n)^{-i}
|
|
|
|
Implementation
|
|
--------------
|
|
|
|
In TRIQS, the tail is implemented as an object ``tail``. Here is a simple example of use:
|
|
|
|
|
|
.. compileblock::
|
|
|
|
#include <Python.h>
|
|
#include <iostream>
|
|
#include <triqs/gfs/local/tail.hpp>
|
|
int main(){
|
|
int N1=1, N2=1;
|
|
triqs::gfs::local::tail t(N1,N2);
|
|
t.mask_view() = 5;//only coeffs from -1 to 5 are meaningful
|
|
std::cout << t(0) << std::endl;
|
|
t(2) = .5;
|
|
std::cout << t << std::endl;
|
|
}
|
|
|
|
|
|
|
|
Fitting the tail of a Green's function
|
|
---------------------------------------
|
|
|
|
Given an imaginary-frequency Green's function, one can compute the moments of its high-frequency tail with the function ``set_tail_from_fit``:
|
|
|
|
|
|
.. compileblock::
|
|
|
|
#include <triqs/gfs.hpp>
|
|
#include <triqs/gfs/local/fit_tail.hpp>
|
|
using namespace triqs::gfs;
|
|
int main(){
|
|
triqs::clef::placeholder<0> iom_;
|
|
double beta =10;
|
|
int N=100;
|
|
|
|
auto gw = gf<imfreq>{{beta, Fermion, N}, {1, 1}};
|
|
gw(iom_) << 1/(iom_-1);
|
|
|
|
size_t n_min=50; //linear index on mesh to start the fit
|
|
size_t n_max=90; //final linear index for fit (included)
|
|
int n_moments=4; //number of moments in the final tail (including known ones)
|
|
int size=1; //means that we know one moment
|
|
int order_min=1; //means that the first moment in the final tail will be the first moment
|
|
auto known_moments = local::tail(make_shape(1,1), size, order_min); //length is 0, first moment to fit is order_min
|
|
known_moments(1)=1.;//set the first moment
|
|
set_tail_from_fit(gw, known_moments, n_moments, n_min, n_max, true);//true replace the gf data in the fitting range by the tail values
|
|
std::cout << gw.singularity() << std::endl;
|
|
}
|
|
|
|
|
|
The full documentation of ``set_tail_from_fit`` is :doc:`here<set_tail_from_fit>`.
|
|
|
|
API
|
|
****
|
|
Here are the main methods of the ``tail`` class:
|
|
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| Member | Description | Type |
|
|
+=================================+=========================================================================================+==========================+
|
|
| data() | 3-dim array of the coefficients: ``data(i,n,m)`` :math:`=(\mathbf{a}_{i+o_{min}})_{nm}` | data_view_type |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| mask_view() | 2-dim (:math:`N_1 \times N_2`) array of the maximum non-zero indices | mask_view_type |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| order_min() | minimum order | long |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| order_max() | maximum order | long |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| size() | first dim of data() | size_t |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| shape() | shape of data() | shape_type |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| smallest_nonzeros() | order of the smallest_nonzero coefficient | long |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| is_decreasing_at_infinity() | true if the tail is decreasing at infinity | bool |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| operator() (int n) | matrix_valued coefficient :math:`(\mathbf{a}_i)_{nm}` | mv_type |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| get_or_zero (int n) | matrix_valued coefficient :math:`(\mathbf{a}_i)_{nm}` | const_mv_type |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
| evaluate(dcomplex const &omega) | value of the tail at frequency omega | arrays::matrix<dcomplex> |
|
|
+---------------------------------+-----------------------------------------------------------------------------------------+--------------------------+
|
|
|
|
|
|
The tail is DefaultConstructible, H5Serializable and BoostSerializable.
|