mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 05:58:18 +01:00
47cb8a03f7
- Simplify group_indices - Only for C ordered, remove complex compile time. - Could be generalized to non C ordered, but no need. - Fix slice for custom orders. - Generalize the group_indices for the custom order. - Add c_ordered_transposed_view (useful ?) - Improve slice, special for ellipsis (quicker). - Simplify TraversalOrder - Assignement. Specialize one case for speed. - use FORCEINLINE in foreach, according to speed test for clang - add one speed test - Modify iterators for better speed. - along the lines decided for the foreach - update doc.
123 lines
5.6 KiB
C++
123 lines
5.6 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#include "../impl/common.hpp"
|
|
#include "../impl/traits.hpp"
|
|
#include "../../utility/mini_vector.hpp"
|
|
#include "./numpy_extractor.hpp"
|
|
#ifdef TRIQS_WITH_PYTHON_SUPPORT
|
|
|
|
namespace triqs { namespace arrays { namespace numpy_interface {
|
|
|
|
PyObject *numpy_extractor_impl(PyObject *X, bool enforce_copy, std::string type_name, int elementsType, int rank,
|
|
size_t *lengths, std::ptrdiff_t *strides, size_t size_of_ValueType) {
|
|
|
|
PyObject * numpy_obj;
|
|
|
|
if (X==NULL) TRIQS_RUNTIME_ERROR<<"numpy interface : the python object is NULL !";
|
|
if (_import_array()!=0) TRIQS_RUNTIME_ERROR <<"Internal Error in importing numpy";
|
|
|
|
static const char * error_msg = " A deep copy of the object would be necessary while views are supposed to guarantee to present a *view* of the python data.\n";
|
|
|
|
if (!enforce_copy) {
|
|
if (!PyArray_Check(X)) throw copy_exception () << error_msg<<" Indeed the object was not even an array !\n";
|
|
if ( elementsType != PyArray_TYPE((PyArrayObject*)X))
|
|
throw copy_exception () << error_msg<<" The deep copy is caused by a type mismatch of the elements. Expected "<< type_name<< " and found XXX \n";
|
|
PyArrayObject *arr = (PyArrayObject *)X;
|
|
#ifdef TRIQS_NUMPY_VERSION_LT_17
|
|
if ( arr->nd != rank) throw copy_exception () << error_msg<<" Rank mismatch . numpy array is of rank "<< arr->nd << "while you ask for rank "<< rank<<". \n";
|
|
#else
|
|
if ( PyArray_NDIM(arr) != rank) throw copy_exception () << error_msg<<" Rank mismatch . numpy array is of rank "<< PyArray_NDIM(arr) << "while you ask for rank "<< rank<<". \n";
|
|
#endif
|
|
numpy_obj = X; Py_INCREF(X);
|
|
}
|
|
else {
|
|
// From X, we ask the numpy library to make a numpy, and of the correct type.
|
|
// This handles automatically the cases where :
|
|
// - we have list, or list of list/tuple
|
|
// - the numpy type is not the one we want.
|
|
// - adjust the dimension if needed
|
|
// If X is an array :
|
|
// - if Order is same, don't change it
|
|
// - else impose it (may provoque a copy).
|
|
// if X is not array :
|
|
// - Order = FortranOrder or SameOrder - > Fortran order otherwise C
|
|
|
|
//bool ForceCast = false;// Unless FORCECAST is present in flags, this call will generate an error if the data type cannot be safely obtained from the object.
|
|
int flags = 0; //(ForceCast ? NPY_FORCECAST : 0) ;// do NOT force a copy | (make_copy ? NPY_ENSURECOPY : 0);
|
|
//if (!(PyArray_Check(X) ))
|
|
//flags |= ( IndexMapType::traversal_order == indexmaps::mem_layout::c_order(rank) ? NPY_C_CONTIGUOUS : NPY_F_CONTIGUOUS); //impose mem order
|
|
#ifdef TRIQS_NUMPY_VERSION_LT_17
|
|
flags |= (NPY_C_CONTIGUOUS); //impose mem order
|
|
flags |= (NPY_ENSURECOPY);
|
|
#else
|
|
flags |= (NPY_ARRAY_C_CONTIGUOUS); // impose mem order
|
|
flags |= (NPY_ARRAY_ENSURECOPY);
|
|
#endif
|
|
numpy_obj= PyArray_FromAny(X,PyArray_DescrFromType(elementsType), rank,rank, flags , NULL );
|
|
|
|
// do several checks
|
|
if (!numpy_obj) {// The convertion of X to a numpy has failed !
|
|
if (PyErr_Occurred()) {
|
|
//PyErr_Print();
|
|
PyErr_Clear();
|
|
}
|
|
TRIQS_RUNTIME_ERROR<<"numpy interface : the python object is not convertible to a numpy. ";
|
|
}
|
|
assert (PyArray_Check(numpy_obj)); assert((numpy_obj->ob_refcnt==1) || ((numpy_obj ==X)));
|
|
|
|
PyArrayObject *arr_obj;
|
|
arr_obj = (PyArrayObject *)numpy_obj;
|
|
try {
|
|
#ifdef TRIQS_NUMPY_VERSION_LT_17
|
|
if (arr_obj->nd!=rank) TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : dimensions do not match";
|
|
if (arr_obj->descr->type_num != elementsType)
|
|
TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : incorrect type of element :" <<arr_obj->descr->type_num <<" vs "<<elementsType;
|
|
#else
|
|
if ( PyArray_NDIM(arr_obj) !=rank) TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : dimensions do not match";
|
|
if ( PyArray_DESCR(arr_obj)->type_num != elementsType)
|
|
TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : incorrect type of element :" <<PyArray_DESCR(arr_obj)->type_num <<" vs "<<elementsType;
|
|
#endif
|
|
}
|
|
catch(...) { Py_DECREF(numpy_obj); throw;} // make sure that in case of problem, the reference counting of python is still ok...
|
|
}
|
|
|
|
// extract strides and lengths
|
|
PyArrayObject *arr_obj;
|
|
arr_obj = (PyArrayObject *)numpy_obj;
|
|
#ifdef TRIQS_NUMPY_VERSION_LT_17
|
|
const size_t dim =arr_obj->nd; // we know that dim == rank
|
|
for (size_t i=0; i< dim ; ++i) {
|
|
lengths[i] = size_t(arr_obj-> dimensions[i]);
|
|
strides[i] = std::ptrdiff_t(arr_obj-> strides[i])/ size_of_ValueType;
|
|
}
|
|
#else
|
|
const size_t dim = PyArray_NDIM(arr_obj); // we know that dim == rank
|
|
for (size_t i=0; i< dim ; ++i) {
|
|
lengths[i] = size_t( PyArray_DIMS(arr_obj)[i]);
|
|
strides[i] = std::ptrdiff_t( PyArray_STRIDES(arr_obj)[i])/ size_of_ValueType;
|
|
}
|
|
#endif
|
|
|
|
return numpy_obj;
|
|
}
|
|
}}}
|
|
#endif
|