mirror of
https://github.com/triqs/dft_tools
synced 2024-12-25 13:53:40 +01:00
47cb8a03f7
- Simplify group_indices - Only for C ordered, remove complex compile time. - Could be generalized to non C ordered, but no need. - Fix slice for custom orders. - Generalize the group_indices for the custom order. - Add c_ordered_transposed_view (useful ?) - Improve slice, special for ellipsis (quicker). - Simplify TraversalOrder - Assignement. Specialize one case for speed. - use FORCEINLINE in foreach, according to speed test for clang - add one speed test - Modify iterators for better speed. - along the lines decided for the foreach - update doc.
128 lines
4.4 KiB
C++
128 lines
4.4 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011-2014 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#pragma once
|
|
namespace triqs {
|
|
namespace arrays {
|
|
|
|
struct __mem_layout_fortran_order {};
|
|
struct __mem_layout_c_order {};
|
|
#define C_LAYOUT (triqs::arrays::__mem_layout_c_order())
|
|
#define FORTRAN_LAYOUT (triqs::arrays::__mem_layout_fortran_order())
|
|
|
|
enum class memory_order_type {
|
|
C,
|
|
Fortran,
|
|
Custom
|
|
};
|
|
|
|
/* The storage order is given by a permutation P
|
|
* P[0] : the slowest index,
|
|
* P[Rank-1] : the fastest index
|
|
* Example :
|
|
* 210 : Fortran, the first index is the fastest
|
|
* 012 : C the last index is the fastest
|
|
* 120 : storage (i,j,k) is : index j is slowest, then k, then i
|
|
*/
|
|
template <int Rank> class memory_layout {
|
|
|
|
memory_order_type order = memory_order_type::C;
|
|
mini_vector<int, Rank> p = utility::no_init_tag{};
|
|
|
|
public:
|
|
static const int rank = Rank;
|
|
|
|
explicit memory_layout() {
|
|
for (int u = 0; u < Rank; ++u) p[u] = u;
|
|
}
|
|
|
|
memory_layout(__mem_layout_fortran_order) {
|
|
order = memory_order_type::Fortran;
|
|
for (int u = 0; u < Rank; ++u) p[u] = Rank - u - 1;
|
|
}
|
|
|
|
memory_layout(__mem_layout_c_order) : memory_layout() {}
|
|
|
|
// internal use only : no check , we KNOW the order is not C or Fortran
|
|
template <typename T> explicit memory_layout(mini_vector<T, Rank> v, bool) : p(std::move(v)) {
|
|
order = memory_order_type::Custom;
|
|
}
|
|
|
|
// For the user : we find out whether it is C or Fortran
|
|
template <typename T> explicit memory_layout(mini_vector<T, Rank> v) : p(std::move(v)) {
|
|
bool c = true, f = true;
|
|
for (int u = 0; u < Rank; ++u) {
|
|
c = c && (v[u] == u);
|
|
f = f && (v[u] == Rank - u - 1);
|
|
}
|
|
if (c) return;
|
|
order = (f ? memory_order_type::Fortran : memory_order_type::Custom);
|
|
}
|
|
|
|
template <typename... INT>
|
|
explicit memory_layout(int i0, INT... in)
|
|
: memory_layout(mini_vector<int, sizeof...(INT) + 1>{i0, in...}) {}
|
|
|
|
bool operator==(memory_layout const &ml) const { return p == ml.p; }
|
|
bool operator!=(memory_layout const &ml) const { return !operator==(ml); }
|
|
|
|
int operator[](int u) const { return p[u]; }
|
|
|
|
bool is_c() const { return order == memory_order_type::C; }
|
|
bool is_fortran() const { return order == memory_order_type::Fortran; }
|
|
|
|
mini_vector<int, Rank> get_memory_positions() const {
|
|
auto r = mini_vector<int, Rank>(utility::no_init_tag{});
|
|
for (int u = 0; u < Rank; ++u) r[p[u]] = u;
|
|
return r;
|
|
}
|
|
|
|
mini_vector<int, Rank> get_indices_in_order() const { return p; }
|
|
|
|
friend std::ostream &operator<<(std::ostream &out, memory_layout const &s) { return out << s.p; }
|
|
};
|
|
|
|
// ------------------------- functions -------------------------------------
|
|
|
|
/// Make a memory_layout from the indices
|
|
template <typename... T> memory_layout<sizeof...(T)> make_memory_layout(T... x) { return memory_layout<sizeof...(T)>(x...); }
|
|
|
|
/// Make a memory_layout from the strides
|
|
template <int Rank> memory_layout<Rank> memory_layout_from_strides(mini_vector<std::ptrdiff_t, Rank> const &strides) {
|
|
mini_vector<int, Rank> c; // rely on init to 0 by default of mini_vector
|
|
for (int i = 0; i < Rank; ++i)
|
|
for (int j = i + 1; j < Rank; ++j)
|
|
if (strides[i] > strides[j])
|
|
c[i]++;
|
|
else
|
|
c[j]++;
|
|
// we computed the map : index -> memory_rank, which is the inverse map, cf mem_layout
|
|
return memory_layout<Rank>{c};
|
|
}
|
|
|
|
/// Apply a permutation to the indices
|
|
template <int R> memory_layout<R> transpose(memory_layout<R> const &ml, mini_vector<int, R> const &perm) {
|
|
mini_vector<int, R> res;
|
|
for (int u = 0; u < R; ++u) res[u] = perm[ml[u]];
|
|
return memory_layout<R>{res};
|
|
}
|
|
}
|
|
} // namespace triqs::arrays
|