3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 14:08:24 +01:00
dft_tools/pytriqs/gf/local/gf_desc.py
Olivier Parcollet 4f51c1e043 Correction.
- forgot the doc file.
- minor correction for wrapping application
2014-05-31 18:51:50 +02:00

475 lines
18 KiB
Python

from wrap_generator import *
module = module_(full_name = "pytriqs.gf.local.gf", doc = "Local Green functions ...")
module.add_include("<triqs/gfs.hpp>")
module.add_include("<triqs/gfs/local/functions.hpp>")
module.add_include("<triqs/gfs/local/pade.hpp>")
module.add_include("<triqs/gfs/local/legendre_matsubara.hpp>")
module.add_using("namespace triqs::arrays")
module.add_using("namespace triqs::gfs")
module.add_using("namespace triqs::gfs::local")
module.add_using("triqs::utility::mini_vector")
########################
## TailGf
########################
t = class_( py_type = "TailGf",
c_type = "local::tail_view",
c_type_absolute = "triqs::gfs::local::tail_view",
serializable= "tuple",
is_printable= True,
arithmetic = ("algebra","double")
)
t.add_constructor(signature = "(int N1, int N2, int n_order=10, int order_min=-1)",
doc = "Constructs a new tail, of matrix size N1xN2, with n_order expansion starting at order_min")
t.add_property(name = "data",
getter = cfunction("array_view<dcomplex,3> data()"),
doc = "Access to the data array")
#t.add_property(name = "shape", getter = cfunction("int shape()", doc = "Shape"))
t.add_property(getter = cfunction("int size()"),
doc = "size")
t.add_property(getter = cfunction("int order_min()"),
doc = "Min order of the expansion")
t.add_property(getter = cfunction("int order_max()"),
doc = "Max order of the expansion")
t.add_property(name = "mask",
getter = cfunction("array_view<long,2> mask_view()"),
doc = "Access to the mask")
t.add_method(name = "has_coef",
calling_pattern = "bool result = (i >=self_c.order_min()) && (i<=self_c.order_max())",
signature = "bool(int i)",
doc = "A method which did not exist in C++")
# strange, I should not quality : ADL ??
t.add_method(name = "invert",
calling_pattern = "self_c = local::inverse(self_c)",
signature = "void()",
doc = "Invert")
t.add_method(name = "zero",
calling_pattern = "self_c = 0",
signature = "void()",
doc = "Sets the expansion to 0")
t.add_method_copy()
t.add_method_copy_from()
t.add_call(calling_pattern = "auto result = self_c.evaluate(u)",
signature = "dcomplex(dcomplex u)",
doc = "")
t.number_protocol['multiply'].add_overload(calling_pattern = "*", signature = "tail(matrix<dcomplex> x,tail_view y)")
t.number_protocol['multiply'].add_overload(calling_pattern = "*", signature = "tail(tail_view x,matrix<dcomplex> y)")
# ok, but MISSING CHECK SIZE
t.add_getitem(signature = "matrix_view<dcomplex> operator()(int i)",
doc = "Returns the i-th coefficient of the expansion, or order Om^i")
t.add_setitem(calling_pattern = "self_c(i) = m",
signature = "void(int i, matrix<dcomplex> m)", # I use matrix, not view. It makes a copy, but ensure I can pass double, int, and numpy will convert.
doc = "Sets the i-th coefficient of the expansion, or order Om^i")
module.add_class(t)
# Change C++ to make the same
# def __repr__ (self) :
# omin = self.order_min
# while ((omin <= self.order_max) and (numpy.max(numpy.abs(self.data[omin-self.order_min,:,:])) < 1e-8)):
# omin = omin+1
# if omin == self.order_max+1:
# return "%s"%numpy.zeros(self.shape)
# else:
# return string.join([ "%s"%self[r]+ (" /" if r>0 else "") + " Om^%s"%(abs(r)) for r in range(omin, self.order_max+1) ] , " + ")
########################
## enums
########################
module.add_enum(c_name = "statistic_enum",
c_namespace = "triqs::gfs",
values = ["Fermion","Boson"])
module.add_enum(c_name = "mesh_kind",
c_namespace = "triqs::gfs",
values = ["half_bins","full_bins","without_last"])
########################
## Mesh generic
########################
def make_mesh( py_type, c_tag, has_kind=True, is_im=False) :
m = class_( py_type = py_type,
c_type = "gf_mesh<%s>"%c_tag,
c_type_absolute = "triqs::gfs::gf_mesh<triqs::gfs::%s>"%c_tag,
serializable= "tuple",
is_printable= True,
)
if is_im :
m.add_property(name = "beta",
getter = cfunction(calling_pattern="double result = self_c.domain().beta",
signature = "double()",
doc = "Inverse temperature"))
m.add_property(name = "statistic",
getter = cfunction(calling_pattern="statistic_enum result = self_c.domain().statistic", signature = "statistic_enum()"),
doc = "Statistic")
m.add_len(calling_pattern = "int result = self_c.size()", doc = "Size of the mesh")
m.add_iterator(c_cast_type = "dcomplex")
if has_kind :
m.add_property(name = "kind",
getter = cfunction(calling_pattern="mesh_kind result = self_c.kind()", signature = "mesh_kind()"),
doc = "")
#def __richcmp__(MeshImFreq self, MeshImFreq other,int op) :
# if op ==2 : # ==
# return self._c == other._c
return m
########################
## MeshImFreq
########################
m = make_mesh( py_type = "MeshImFreq", c_tag = "imfreq", has_kind = False, is_im = True)
m.add_constructor(signature = "(double beta, statistic_enum S, int n_max=1025, bool positive_only=true)")
module.add_class(m)
########################
## MeshImTime
########################
m = make_mesh(py_type = "MeshImTime", c_tag = "imtime", is_im = True)
m.add_constructor(signature = "(double beta, statistic_enum S, int n_max, mesh_kind kind)")
module.add_class(m)
########################
## MeshLegendre
########################
m = make_mesh( py_type = "MeshLegendre", c_tag = "legendre", has_kind = False, is_im = True)
m.add_constructor(signature = "(double beta, statistic_enum S, int n_max=1025)")
module.add_class(m)
########################
## MeshReFreq
########################
m = make_mesh(py_type = "MeshReFreq", c_tag = "refreq")
m.add_constructor(signature = "(double omega_min, double omega_max, int n_max, mesh_kind kind)")
m.add_property(name = "omega_min",
getter = cfunction(calling_pattern="double result = self_c.x_min()",
signature = "double()",
doc = "Inverse temperature"))
m.add_property(name = "omega_max",
getter = cfunction(calling_pattern="double result = self_c.x_max()",
signature = "double()",
doc = "Inverse temperature"))
module.add_class(m)
########################
## MeshReTime
########################
m = make_mesh(py_type = "MeshReTime", c_tag = "retime")
m.add_constructor(signature = "(double t_min, double t_max, int n_max, mesh_kind kind)")
m.add_property(name = "t_min",
getter = cfunction(calling_pattern="double result = self_c.x_min()",
signature = "double()",
doc = "Inverse temperature"))
m.add_property(name = "t_max",
getter = cfunction(calling_pattern="double result = self_c.x_max()",
signature = "double()",
doc = "Inverse temperature"))
module.add_class(m)
########################
## Gf Generic : common to all 5 one variable gf
########################
def make_gf( py_type, c_tag, is_complex_data = True, is_im = False, has_tail = True) :
data_type = "std::complex<double>" if is_complex_data else "double"
g = class_(
py_type = py_type,
c_type = "gf_view<%s>"%c_tag,
c_type_absolute = "triqs::gfs::gf_view<triqs::gfs::%s>"%c_tag,
#serializable= "boost",
serializable= "tuple",
is_printable= True,
hdf5 = True,
arithmetic = ("algebra",data_type)
)
g.add_constructor(signature = "(gf_mesh<%s> mesh, mini_vector<size_t,2> shape, std::vector<std::vector<std::string>> indices = std::vector<std::vector<std::string>>{}, std::string name = "")"%c_tag, python_precall = "pytriqs.gf.local._gf_%s.init"%c_tag)
g.add_method_copy()
g.add_method_copy_from()
# properties
g.add_member(c_name = "name", c_type ="std::string", doc = "Name of the Green function (used for plotting only)")
if is_im :
g.add_property(name = "beta",
getter = cfunction(calling_pattern="double result = self_c.domain().beta", signature = "double()"),
doc = "Inverse temperature")
g.add_property(name = "statistic",
getter = cfunction(calling_pattern="statistic_enum result = self_c.domain().statistic", signature = "statistic_enum()"),
doc = "Statistic")
g.add_property(getter = cfunction("gf_mesh<%s> mesh()"%c_tag),
doc ="The mesh")
g.add_property(name = "data",
getter = cfunction(calling_pattern="auto result = self_c.data()", signature = "array_view<%s,3>()"%data_type),
doc ="The data ")
g.add_property(name = "target_shape",
getter = cfunction(calling_pattern="auto result = get_target_shape(self_c)", signature = "shape_type()"),
doc = "")
if has_tail:
g.add_property(name = "tail",
getter = cfunction(c_name="singularity", signature = "local::tail_view()"),
doc ="The high frequency tail")
g.add_property(name = "indices",
getter = cfunction(calling_pattern="auto result = self_c.indices()[0]", signature = "std::vector<std::string>()"),
doc ="The indices(L)")
# backward compatibility
g.add_property(name = "N1",
getter = cfunction(calling_pattern="int result = get_target_shape(self_c)[0]", signature = "int()"),
doc = "[Deprecated] equivalent to target_shape[0]")
g.add_property(name = "N2",
getter = cfunction(calling_pattern="int result = get_target_shape(self_c)[1]", signature = "int()"),
doc = "[Deprecated] equivalent to target_shape[1]")
# []
g.add_getitem(signature = "gf_view<%s>(range r1, range r2)"%c_tag,
calling_pattern= "auto result = slice_target(self_c,r1,r2)",
doc = "Returns a sliced view of the Green function")
g.add_getitem(signature = "gf_view<%s>(std::string i1, std::string i2)"%c_tag,
calling_pattern= "auto result = slice_target(self_c,self_c.indices().convert_index(i1,0),self_c.indices().convert_index(i2,1))",
doc = "Returns a sliced view of the Green function")
g.add_setitem(signature = "void(PyObject* r1, PyObject* r2, PyObject* val)",
calling_pattern=
"""
pyref gs_py = PyObject_GetItem(self,Py_BuildValue("(NN)", r1,r2)); // gs = self[r1,r2]
pyref res = PyNumber_InPlaceLshift(gs_py,val); // gs <<= val
""",
no_self_c = True, # avoid a warning
doc = "g[....] <<= what_ever : fills the slice of the Green function with what_ever")
# Plot
g.add_property(name = "real",
getter = "pytriqs.gf.local._gf_common._real_plot",
doc ="real option for plotting")
g.add_property(name = "imag",
getter = "pytriqs.gf.local._gf_common._imag_plot",
doc ="imag option for plotting")
# Lazy system
g.add_pure_python_method("pytriqs.gf.local._gf_common.LazyCTX", rename = "__lazy_expr_eval_context__")
# For basic ops, if the other operand is a lazy expression, build a lazy
# expression : this is done by this little external functions, for backward
# compatibility
g.number_protocol['add'].python_precall = "pytriqs.gf.local._gf_common.add_precall"
g.number_protocol['subtract'].python_precall = "pytriqs.gf.local._gf_common.sub_precall"
g.number_protocol['multiply'].python_precall = "pytriqs.gf.local._gf_common.mul_precall"
g.number_protocol['divide'].python_precall = "pytriqs.gf.local._gf_common.div_precall"
g.number_protocol['inplace_lshift'] = pyfunction(name ="__inplace_lshift__", python_precall = "pytriqs.gf.local._gf_common._ilshift_", arity = 2)
g.add_method(name = "invert", calling_pattern = "invert_in_place(self_c)" , signature = "void()", doc = "Invert (in place)")
g.add_method(name = "transpose",
calling_pattern = "auto result = transpose(self_c)",
signature = "gf<%s>()"%c_tag,
doc = "Returns a NEW gf, with transposed data, i.e. it is NOT a transposed view.")
if c_tag not in [ "imtime", "legendre"] :
g.add_method(name = "conjugate", calling_pattern = "auto result = conj(self_c)" , signature = "gf<%s>()"%c_tag, doc = "Return a new function, conjugate of self.")
g.number_protocol['multiply'].add_overload(calling_pattern = "*", signature = "gf<%s>(matrix<%s> x,gf<%s> y)"%(c_tag,data_type,c_tag))
g.number_protocol['multiply'].add_overload(calling_pattern = "*", signature = "gf<%s>(gf<%s> x,matrix<%s> y)"%(c_tag,c_tag,data_type))
g.add_method(name = "from_L_G_R",
calling_pattern = "self_c = L_G_R(l,g,r)",
signature = "void(matrix<%s> l,gf<%s> g,matrix<%s> r)"%(data_type,c_tag,data_type),
doc = "self <<= l * g * r")
g.add_method(name = "zero",
calling_pattern = "self_c = 0",
signature = "void()",
doc = "Put the Green function to 0")
# Pure python methods
g.add_pure_python_method("pytriqs.gf.local._gf_%s.plot"%c_tag, rename = "_plot_")
return g
########################
## GfImFreq
########################
g = make_gf(py_type = "GfImFreq", c_tag = "imfreq", is_im = True)
g.add_method(name = "density",
calling_pattern = "auto result = density(self_c)",
signature = "matrix_view<double>()",
doc = "Density, as a matrix, computed from a Matsubara sum")
g.add_method(name = "total_density",
calling_pattern = "auto result = trace(density(self_c))",
signature = "double()",
doc = "Trace of density")
g.add_method(name = "set_from_fourier",
signature = "void(gf_view<imtime> gt)",
calling_pattern = "self_c = fourier(*gt)",
doc = """Fills self with the Fourier transform of gt""")
g.add_method(name = "set_from_legendre",
signature = "void(gf_view<legendre> gl)",
calling_pattern = "self_c = legendre_to_imfreq(*gl)",
doc = """Fills self with the legendre transform of gl""")
# Pure python methods
g.add_pure_python_method("pytriqs.gf.local._gf_imfreq.replace_by_tail")
g.add_pure_python_method("pytriqs.gf.local._gf_imfreq.fit_tail")
module.add_class(g)
########################
## GfImTime
########################
g = make_gf(py_type = "GfImTime", c_tag = "imtime", is_complex_data = False, is_im = True)
g.add_method(name = "set_from_inverse_fourier",
signature = "void(gf_view<imfreq> gw)",
calling_pattern = "self_c = inverse_fourier(*gw)",
doc = """Fills self with the Inverse Fourier transform of gw""")
g.add_method(name = "set_from_legendre",
signature = "void(gf_view<legendre> gl)",
calling_pattern = "self_c = legendre_to_imtime(*gl)",
doc = """Fills self with the legendre transform of gl""")
# add the call operator using the interpolation
g.add_call(signature = "matrix<double>(double tau)", doc = "G(tau) using interpolation")
module.add_class(g)
########################
## GfLegendre
########################
# the domain
dom = class_( py_type = "GfLegendreDomain",
c_type = "legendre_domain",
c_type_absolute = "triqs::gfs::legendre_domain",
serializable= "tuple",
)
dom.add_constructor(signature = "(double beta, statistic_enum S, int n_max)")
module.add_class(dom)
g = make_gf(py_type = "GfLegendre", c_tag = "legendre", is_im = True, is_complex_data = False, has_tail =False)
g.add_method(name = "density",
calling_pattern = "auto result = density(self_c)",
signature = "matrix_view<double>()",
doc = "Density, as a matrix, computed from a Matsubara sum")
g.add_method(name = "total_density",
calling_pattern = "auto result = trace(density(self_c))",
signature = "double()",
doc = "Trace of density")
g.add_method(name = "set_from_imtime",
signature = "void(gf_view<imtime> gt)",
calling_pattern = "self_c = imtime_to_legendre(*gt)",
doc = """Fills self with the legendre transform of gt""")
g.add_method(name = "set_from_imfreq",
signature = "void(gf_view<imfreq> gw)",
calling_pattern = "self_c = imfreq_to_legendre(*gw)",
doc = """Fills self with the legendre transform of gw""")
g.add_method(name = "enforce_discontinuity",
signature = "void(matrix_view<double> disc)",
calling_pattern = "enforce_discontinuity(self_c, disc)",
doc = """Modify the coefficient to adjust discontinuity""")
module.add_class(g)
########################
## GfReFreq
########################
g = make_gf(py_type = "GfReFreq", c_tag = "refreq")
g.add_method(name = "set_from_fourier",
signature = "void(gf_view<retime> gt)",
calling_pattern = "self_c = fourier(*gt)",
doc = """Fills self with the Fourier transform of gt""")
g.add_method(name = "set_from_pade",
signature = "void(gf_view<imfreq> gw, int n_points = 100, double freq_offset = 0.0)",
calling_pattern = "pade(self_c,*gw,n_points, freq_offset)",
doc = """TO BE WRITTEN""")
module.add_class(g)
########################
## GfReTime
########################
g = make_gf(py_type = "GfReTime", c_tag = "retime")
g.add_method(name = "set_from_inverse_fourier",
signature = "void(gf_view<refreq> gw)",
calling_pattern = "self_c = inverse_fourier(*gw)",
doc = """Fills self with the Inverse Fourier transform of gw""")
module.add_class(g)
# EXPERIMENTAL : global fourier functions....
# To be replaced by make_gf(fourier...)).
module.add_function(name = "make_gf_from_inverse_fourier", signature="gf_view<retime>(gf_view<refreq> gw)", doc ="")
########################
## Code generation
########################
module.generate_code()